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We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases.
We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recom-
bination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and
can be simulated using known numerical methods. As an example we investigate the behavior of a simple
homogeneous Bose gas, finding a very slight increase of the loss rate compared to that obtained by using the
standard method.
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I. INTRODUCTION

The dominant loss process affecting ultracold gaseous al-
kali metal systems is inelastic three-body recombination
�1–4�, a process characterized by collisional events involving
three atoms leading to the creation of a single two-atom mol-
ecule �a dimer�. The binding energy released by the molecule
formation is retained by the particles as kinetic energy. Typi-
cally this results in the loss of all three atoms from the sys-
tem as the molecule is not trapped by any applied external
potential and the energy of the free atom is high enough to
overcome any confinement barrier. Indeed it is this process
that limits the lifetime of experimentally produced alkali-
metal Bose-Einstein condensates, due to the large increase in
density once the temperature is lowered past the critical point
�5�.

In a previous paper �6� we presented a comprehensive
treatment of the truncated Wigner approach for ultracold
Bose gases including elastic two-body interactions. In this
paper we extend that treatment to include three-body recom-
bination events, which modifies the ensemble differential
equations describing the evolution of a single realization of
the field. These modified differential equations are explicitly
stochastic, including dynamic noise sources arising from the
action of three-body recombination on the virtual particle
background field.

To provide a demonstration of our extended formalism we
examine the evolution of a simple homogeneous system,
starting from a zero-temperature state where the particle
population is initially confined to a single �condensate�
mode.

Three-body recombination in ultracold gases

Assuming that three-body recombination is the only par-
ticle loss mechanism affecting the system, it can be shown
that the rate of change of total particle number is �2�

dN�t�
dt

= − 3K3� dxg�3��x,t�n�x,t�3, �1�

where n�x , t� is the total number density of atoms and K3 is

the three-body recombination event rate constant. We have
assumed that all the particles involved in the recombination
process are lost from the system, hence the prefactor of 3 in
Eq. �1�, which describes the number of particles lost from the
system. The third-order normalized equiposition correlation
function g�3��x , t� measures the statistics of the field, being
unity for a fully coherent system, i.e., a zero-temperature
condensate, and 3!=6 for a purely thermal system. The fac-
tor of 6 increase in the loss rate of thermal over coherent
systems for similar densities has been observed experimen-
tally �2�.

II. TRUNCATED WIGNER TREATMENT

A. The restricted field

As in our previous work �6�, we describe the many-body
system of identical bosons using the Schrödinger picture
bosonic field operator

�̂�x� = �
j

� j�x�âj . �2�

Here the mode operators âj annihilate a single boson from
the jth mode, and obey the commutation relations

�âi, âj� = �âi
†, âj

†� = 0, �âi, âj
†� = �i,j , �3�

while the coordinate space functions � j�x� form an infinite
orthonormal basis set where

�−
�2�2

2m
+ Uext�x��� j�x� = �� j� j�x� , �4�

where Uext�x� is the applied external potential.
We now divide mode space into two subspaces, a low-

energy space �L� consisting of all those modes whose
eigenenergies are less than the boundary energy �cut, and a
high-energy space �H� that includes all remaining modes.
For this work our interest lies with the dynamics of the low-
energy subspace. Using these subspaces we define the field
operators
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�̂P�x� 	 �
j�L

� j�x�âj , �5a�

�̂Q�x� 	 �
j�H

� j�x�âj . �5b�

Of most importance for this paper is the low-energy re-

stricted basis field operator �̂P�x�, which can be obtained
from the total field operator

�̂�x� 	 �
j�L,H

� j�x�âj , �6�

using the projector

P 	 �
j�L


j��j
 �7�

as �̂P�x�=P��̂�x��. The restricted basis field operator obeys
the commutation relations

��̂P�x�,�̂P�x��� = ��̂P
† �x�,�̂P

† �x��� = 0,

��̂P�x�,�̂P
† �x��� = �P�x,x�� , �8�

where the restricted delta function is defined by

�P�x,x�� 	 �
j�L

� j
*�x��� j�x� . �9�

The conjugate projector Q can be obtained using the comple-
mentarity relation P+Q=1.

B. Master equation

Our previous paper �6� assumed that only two atoms par-
ticipate in any single scattering event. In this way the particle
interactions are described using a simple s-wave contact po-
tential as an approximation to the full two-body T-matrix.
Obviously such a description does not include three-body
scattering events. Full theoretical treatments of three-body
scattering including all possible collisional channels are ex-
tremely complicated, and we do not attempt such an ap-
proach here. Instead we adopt a quantum-optical approach,
starting from a phenomenologically appropriate Hamiltonian
including inelastic three-body recombination events, to
which we apply the truncated Wigner method.

We assume that within the dilute limit the characteristic
range of the three-body recombination potential
UTBR�x1 ,x2 ,x3� is much smaller than the average interpar-
ticle spacing. Thus, following thematically the approach for
pairwise scattering, we replace this scattering potential by an
effective zero-range three-body scattering T-operator, whose
interaction strength is essentially a free parameter that will
be chosen to satisfy experimentally observed loss rates.
Within this approach then, in order to include the effects of
three-body recombination the Schrödinger picture effective
Hamiltonian is modified to include the term �7�

Ĥeff
�TBR� = �TBR� dx�̂Q

† �x��̂†�x���̂P�x��3

+ ��̂P
† �x��3�̂Q�x��̂�x�� , �10�

where the molecule field operator �̂�x� annihilates a dimer
from the field and �TBR is a measure of the energy associated
with the three-body process. We have assumed in formulat-
ing Eq. �10� that the binding energy associated with the mol-
ecule formation is large enough that the unpaired atom gen-
erated by a recombination event is created within the high-
energy subspace H, rather than the low-energy �system�
subspace L, and is described by the high-energy field opera-

tor �̂Q�x�.
Jack �7� has considered this partial Hamiltonian, and has

shown that by eliminating both the molecular and high-
energy atomic fields from the evolution using a standard in-
teraction picture approach for initially uncoupled fields �8�,
one obtains the master equation term

�d	�t�
dt

��TBR�

=



6
� dx2��̂P�x��3	�t���̂P

† �x��3

− ��̂P
† �x��3��̂P�x��3	�t�

− 	�t���̂P
† �x��3��̂P�x��3� , �11�

for the low-energy atomic subspace �system� density opera-
tor 	�t�. The quantity 
 governs the rate of recombination
events, and its relationship to K3 we consider later. In arriv-
ing at this master equation term it has been assumed that the
output products of the recombination events immediately
exit the coordinate space region containing the system, such
that they play no further role in the evolution. To describe the
full master equation for the system density operator one
combines Eq. �11� with the von Neumann equation calcu-
lated in �6�.

C. Functional Wigner function correspondences

The master equation term given by Eq. �11� can be used to
calculate the evolution of the corresponding multimode
Wigner function W�� j ,� j

*� , t� using appropriate operator
correspondences �9�. However, rather than using the mode
operator correspondences that were used in �6�, here we per-
form this step using functional operator correspondences.

We define, similar to the restricted basis field operator

�̂P�x�, the restricted basis wave functions

�P�x� 	 �
j�L

� j�x�� j , �12a�

�P
* �x� 	 �

j�L

� j
*�x�� j

* �12b�

and the related functional derivatives

�

��P�x�
	 �

j�L

� j
*�x�

�

�� j
, �13a�
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�

��P
* �x�

	 �
j�L

� j�x�
�

�� j
* . �13b�

Using these definitions together with the Wigner function
mode operator correpondences �9�, we find that the actions
of the restricted basis field operator on the system density
operator 	�t� can be expressed as actions on the correspond-
ing Wigner function using

�̂P�x�	�t� ↔ ��P�x� +
1

2

�

��P
* �x�

�W�t� , �14a�

�̂P
† �x�	�t� ↔ ��P

* �x� −
1

2

�

��P�x�
�W�t� , �14b�

	�t��̂P�x� ↔ ��P�x� −
1

2

�

��P
* �x�

�W�t� , �14c�

	�t��̂P
† �x� ↔ ��P

* �x� +
1

2

�

��P�x�
�W�t� . �14d�

Such functional Wigner function operator correspondences
have been previously used by Steel et al. �10�.

D. Wigner function evolution

Applying the functional Wigner function operator corre-
spondences, Eq. �14�, to the master equation term describing
three-body recombination, Eq. �11�, we obtain, after some
manipulation, the Wigner function evolution term

� �W

�t
��TBR�

=



6
� dx�� �

��P
�P +

�

��P
* �P

*��3
�P
4 − 9
�P
2�P�x,x� +
9

2
�P�x,x�2�

+
�2

��P��P
* �9
�P
4 − 18
�P
2�P�x,x� +

9

2
�P�x,x�2� +

1

4
� �3

��P
3 �P

3 +
�3

��P
*3�P

*3�
+

9

4
� �3

��P
2 ��P

* �P +
�3

��P��P
*2�P

*��
�P
2 − �P�x,x�� +
3

4
� �4

��P
3 ��P

* �P
2 +

�4

��P��P
*3�P

*2�
+

3

16
� �5

��P
3 ��P

*2�P +
�5

��P
2 ��P

*3�P
*� +

1

16

�6

��P
3 ��P

*3�W . �15�

Equation �15� is a rather complex equation of motion, in-
cluding derivative terms up to sixth order. However, we can
only write differential equations describing the evolution of a
single ensemble member for Wigner function evolutions con-
taining derivative terms up to second order. Thus to proceed
we must truncate the higher order terms in Eq. �15�, a pro-
cess that is also required for the pairwise scattering �6�.

Wigner truncation

To justify the truncation of the higher order terms in the
Wigner function evolution, we follow a similar method to
that given in �6�. Let us assume that at some time � the
Wigner function of the �low-energy� system has the factoriz-
able form

W�� j,� j
*�,�� = �

j�L

 j

�
exp�−  j
� j − � j0


2� . �16�

Here � j0
	�âj� is the expectation value amplitude of the jth

mode, and  j is proportional to the inverse width of the
Wigner function for that mode. This type of function de-
scribes both coherent �where  j =2� and thermally distributed
modes, but does not describe number states or other more
exotic states. The factorizability of this Wigner function in-
dicates that number fluctuations between disparate modes are
uncorrelated.

Evaluating the Wigner function evolution given by Eq.
�15� using the Wigner function given by Eq. �16� returns a
rather complicated expression, which we give in full in the
Appendix, Eq. �A1�. Essentially we find that for increasing
order in � /��P, the leading order term in 
�P
 decreases. In
performing the Wigner truncation for the two-body scattering
in �6�, we required that in the coordinate space regions of
high real particle density that n�x���P�x ,x�. Given that

�P
2�n and that all remaining terms scale as �P, and as-
suming that there is significant real particle density in the
regions where three-body recombination is important com-
pared to the local density of mode functions, only the first
few terms in 
�P
 are important. By keeping only those
terms of fourth and fifth order in 
�P
 we find that, within the
same validity regime for the two-body elastic scattering, the
Wigner function equation of motion can be accurately de-
scribed by

� �W

�t
��TBR�

�



2
� dx� �

��P
�P +

�

��P
* �P

* + 3
�2

��P��P
* �

�
�P
4W . �17�

While it is possible to directly convert this equation of mo-
tion into a set of coupled differential equations, the func-
tional nature of the derivative operators can obscure some of
the details. Instead we choose to perform the conversion us-
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ing an explicit mode representation. Using our definitions of
the functional derivatives, Eq. �13�, we find that the Wigner
function evolution due to three-body recombination can be
expressed as

�W

�t

�TBR�
= �

j�L
� �

�� j




2
� dx� j

*
�P
4�P

+
�

�� j
*




2
� dx� j
�P
4�P

*�W

+
1

2 �
ij�L

�2

�� j��i
*3
� dx� j

*
�P
4�iW . �18�

E. Stochastic differential equations

It is important to remember when converting Eq. �18� to
its equivalent differential equations that we have two sets of
independent variables, � j� and � j

*�. Thus while the drift
terms are straightforward, and we find by using the relations
given in �11� for the Ito calculus that

Aj = −



2
� dx� j

*
�P
4�P,

Aj* = −



2
� dx� j
�P
4�P

* , �19�

where Aj* =Aj
* as required, the diffusion terms are not so

easily obtained.
To obtain the terms in the stochastic differential equations

corresponding to the diffusion terms in Eq. �18�, we first find
it necessary to rewrite the coefficient of that diffusive part as

� dx� j
*
�P
4�i

=� dx� dx�� j
*
�P
2��x − x��
�P� 
2�i� �20�

=� dx� dx�� j
*
�P
2 �

k�L,H
�k��k��

*
�P� 
2�i� �21�

= �
k�L,H

� dx� j
*
�P
2�k� dx���k��

*
�P� 
2�i�, �22�

where it is important to note that the summation over the
index k runs over the complete mode space L � H. Including
basis modes that are not part of the system subspace into the
formalism in this way may appear to be cause for concern, as
the master equation term from which we are working, Eq.
�11�, contains no reference to these high-energy states. How-
ever, we note that we are free to choose any set of ensemble
differential equations that can be shown to be mathematically
equivalent to the Fokker-Planck equation �11�, such that our
inclusion of the high-energy modes in Eq. �22� is certainly
mathematically accurate.

It can be shown, either by rewriting Eq. �18� in terms of
explicitly real quantities �including the mode amplitude

quadratures� and directly using the conversion relations
given in �9�, or by working backwards using complex Ito
calculus, that the ensemble differential equations correspond-
ing to the diffusive part of the Wigner function evolution are
given by

d� j
�diff� =�3


2
� dx� j

*
�P
2 �
k�L,H

�kdWk, �23�

for all those modes j�L. Here the complex Wiener pro-
cesses dWk�t� obey the relations

�dWk�t�� = 0, �24a�

�dWk�t�dWl�t�� = 0, �24b�

�dWk�t�dWl
*�t�� = �k,ldt . �24c�

In fact, given the local nature of the recombination process in
coordinate space, a more useful form of the total Wiener
process is given by

dW�x,t� 	 �
k�L,H

�k�x�dWk�t� , �25�

which can be straightforwardly shown to obey

�dW�x,t�� = 0, �26a�

�dW�x,t�dW�x�,t�� = 0, �26b�

�dW�x,t�dW*�x�,t�� = ��x − x��dt . �26c�

Inserting the spatial Wiener process dW as appropriate
into the diffusive mode evolution given by Eq. �23�, using
the drift mode evolutions of Eq. �19�, and including the evo-
lution in the absence of three-body recombination given in
�6�, gives the total evolution of the low-energy system mode
amplitudes as

d� j = − i� j� jdt +� dx� j
*�− � i

�
U0
�P
2 +




2

�P
4��Pdt

+�3


2

�P
2dW�x,t�� . �27�

Using the definition of the system wave function given by
Eq. �12� we find that the corresponding evolution of the co-
ordinate space field is

d�P = −
i

�
�−

�2�2

2m
+ Uext��Pdt

+ P�− � i

�
U0
�P
2 +




2

�P
4��Pdt

+�3


2

�P
2dW�x,t�� , �28�

where we have recognized the low-energy projector P, Eq.
�7�.
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Rate of population change

The total �real� particle population of the field is defined
as

N 	 �
j�L

�N̂j� = �
j�L

�âj
†âj� . �29�

Using the correspondence of moments of the Wigner func-
tion to symmetrically ordered products of quantum operators
�9�, we find that N can be calculated using Wigner function
averages as

N = �
j�L
�
� j
2 −

1

2
�

W
. �30�

Using this result, we find the rate of change of particle num-
ber for a single trajectory to be given by Ito’s formula �11�

dN

dt
= lim

dt→0

1

dt
�
j�L

�d� j
*� j + � j

*d� j + d� j
*d� j� . �31�

The terms d� j
*d� j� are included here because, unlike ordi-

nary deterministic calculus, the presence of the Wiener pro-
cesses in Eq. �27� give these terms a nonzero value in the
limit dt→0.

Taking expectation values, using the properties of the spa-
tially dependent Wiener process, Eq. �26�, we find the en-
semble averaged rate of normalization change to be

� dN

dt
� = − 
� dx��
�P
6�W −

3

2
�P�
�P
4�W� , �32�

where we have written �P for �P�x ,x� for compactness, as
we also do below. It may appear from Eq. �32� that our
truncated Wigner treatment of three-body recombination in-
troduces a small correction to the rate of particle loss, appar-
ently creating particles �in the average�. However, a clearer
understanding can be obtained by expressing the moments of
the Wigner function as physically significant quantities.

Using the properties of the Wigner function moments we
find, for example, that

�
�P
4�W = ���̂P
† �2�̂P

2 � + 2��̂P
† �̂P��P +

1

2
�P

2 �33�

=g�2�n2 + 2n�P +
1

2
�P, �34�

where we have again suppressed the spatial dependences.
Replacing the Wigner function moments in Eq. �32� in this
way returns

� dN

dt
� = − 
� dx�g�3�n3 + 3g�2�n2�P +

3

2
n�P

2� . �35�

Thus, rather than reducing the rate of particle loss, the trun-
cated Wigner treatment leads to an increased rate of particle
loss. However, given that we have required that n��P to
perform the Wigner truncation, this correction should be
small. Note that Eq. �35� also shows that particle loss only
occurs in those regions where there is real particle density,
such that those coordinate space regions solely occupied by

virtual particles will exhibit zero particle loss. Comparing
Eq. �35� to Eq. �1� shows that 
=3K3. Thus while K3 is the
rate constant for three-body recombination events, 
 is the
number loss rate constant.

It is worthwhile discussing a possible point of confusion
when using these classical field methods. As the field for a
single trajectory is represented by a single wave function, it
could be considered that the field is therefore uniformly co-
herent at all points. In such a case those behaviors that de-
pend upon the statistics of the field, such as three-body re-
combination, would be improperly treated. However, this
view is incorrect, as such statistics only obtain physical
meaning when considering ensembles of trajectories. As an
example, while direct inclusion of the statistics is relevant
when considering three-body recombination using the mean
�either spatial or temporal� particle density, in those regions
where the system exhibits thermal statistics, the trajectory
wave function will exhibit density fluctuations both spatially
and temporally. Thus the �spatial and temporal� mean of

�P
6 will be larger than the mean density cubed, leading to
the increased rate of loss observed experimentally. Indeed,
given that a single trajectory is entirely analogous to a single
experimental run, the fact that here the wave function con-
tains the full behavior of the field is, if not obvious, at least
eminently reasonable. This result also provides for the factor
of 2 increase in nonlinear interaction strength between the
condensate and the thermal particles due to the exchange
energy �12�.

F. Plane-wave basis

While our formalism is applicable to any orthonormal
single-particle basis � j�x��, the most useful set of mode-
functions for many situations, including the simple system
we consider in this paper, is the plane-wave modes. For this
basis the modes are eigenstates of the curvature operator
only, such that Uext=0 and �� j =�2kj

2 /2m where kj 	
k j
,
and

� j�x� =
1

�V
eikj·x. �36�

Within a periodically bounded volume of extent V=Lx�Ly
�Lz the orthonormal plane-wave modes are arranged in mo-
mentum space such that

k j =
2�mj

Lx
k̂x +

2�nj

Ly
k̂y +

2�pj

Lz
k̂z, �37�

where mj, nj, and pj are integers. Using this plane-wave ba-
sis, the energy cutoff that defines the low-energy mode sub-
space becomes a spherical cutoff in momentum space, with
the boundary defined by �kcut=�2m�cut.

III. NUMERICAL SIMULATIONS

To demonstrate our truncated Wigner treatment of three-
body recombination we have numerically simulated a �rela-
tively� simple zero-temperature homogeneous gas of

F ,mF�= 
1,−1� 23Na atoms. We describe the system using a
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set of plane-wave modes, with the initial real particle popu-
lation confined to the ground �k j =0� mode.

Determination of the three-body recombination event rate
constant K3 for various alkali metals has been performed
both theoretically �1,4,13� and experimentally �2,3,14,15�.
For this paper we take as a best estimate of the relevant K3
the value measured at MIT �14� for a fully condensed gas

K3 = 3.7 � 10−31 cm6 s−1. �38�

In that work it was reported that optical confinement was
used to produce a rather large particle density of 23Na of 3
�1015 cm−3 at the center of the trap. Thus, given that the
rate of particle loss scales as n3 and the correction due to the
dynamic noise sources as n2, such a large particle density
should provide information on a parameter regime where
three-body recombination is significant.

We use a simulation volume of V= �4.7 �m�3, such that to
achieve an initial �uniform� density of n=3�1015 cm−3 we
use N0�t=0�=3.06�105. The mode spacing �in velocity
space� along each of the Cartesian directions, Eq. �37�, is
determined by the volume to be 3.7 mm s−1. To characterize
the strength of the interactions, we use a=2.75 nm.

We have performed simulations using two distinct bound-
aries to the low-energy subspace: vcut=44.3 mm s−1, for
which the number of modes M =7.2�103; and vcut
=59.1 mm s−1, for which M =1.7�104. In both cases the
number of modes is significantly less than the number of real
particles, and we therefore expect that both cutoffs will re-
turn valid results.

A. Initial states

For our zero-temperature homogeneous system, the ap-
propriate initial state for a single trajectory is described by

�0�0� = �N0 +
1

2
�A0 + iB0�, � j�0�0� =

1

2
�Aj + iBj� .

�39�

Here Aj and Bj are Gaussian random variables of zero mean
and unit variance, such that

�Aj� = �Bj� = �AiBj� = 0,

�AiAj� = �BiBj� = 1. �40�

This initial state, Eq. �39�, satisfies the assumed Wigner func-
tion used to justify the Wigner truncation, Eq. �16�, with
 j =2 for all j, �00

=�N0, and � j�00
=0.

B. Evolution algorithm

The dynamic noise term present in Eq. �27� means that we
cannot directly apply the deterministic projected RK4IP al-
gorithm, which was used to obtain the results of �6�. Rather
we must employ an algorithm that explicitly allows for such
time-dependent random processes.

The simplest such method is the Euler algorithm �16�, in
which the drift terms are calculated at the start of each time
step and the continuous Wiener processes dW are replaced

by a single discrete Wiener process �W. However, for any
reasonable accuracy the time step for an Euler algorithm
must be very small, thus requiring very long calculation
times. Milstein and Tretyakov �17� have considered various
more sophisticated algorithms for propagating stochastic dif-
ferential equations with dynamic random processes. In par-
ticular, they have shown that for situations where the influ-
ence of the dynamic noise on the system is very much less
than the deterministic evolution �the small noise limit�, one
can accurately describe the total evolution using a relatively
simple modification to the fourth-order Runge-Kutta �RK4�
algorithm. Essentially, in this method one calculates the de-
terministic evolution using the RK4 algorithm, while the dy-
namic noise is calculated using a Euler type derivative cal-
culation based on the state of the system at the start of each
time step. This result therefore allows us to use a slightly
modified version of the projected RK4IP algorithm to propa-
gate Eq. �27�.

Importantly, any numerical propagation method requires a
discrete coordinate space, such that the relations given for
the spatial Wiener process, Eq. �26�, do not apply. Rather, we
use noise sources that obey

�dW��t�� = 0, �41a�

�dW��t�dW��t�� = 0, �41b�

�dW��t�dW�
*�t�� =

1

�V
��,��t , �41c�

where dW��t� is the time-dependent Wiener process at the
�th point on the coordinate space simulation grid and �V is
the volume space increment about that grid point. The algo-
rithm advances the field in time by the increment �t with
each application, and we use �t=250 ns for all our simula-
tions.

C. Results

The total number of real particles within the low-energy
subspace is given by Eq. �30�, where the subtraction of 1 /2
can be understood as removing the virtual particles intro-
duced into the initial state of the field, Eq. �39�. For systems
with a large number of modes M, an excellent estimate of the
total particle number can be made using

N�t� � �
j�L


� j�t�
2 −
M

2
. �42�

In Fig. 1 we plot the estimated total �real� particle numbers
calculated using Eq. �42� for single trajectories of the system
described above using cutoffs of vcut=44.3 and 59.1 mm s−1.
From these curves we observe that, over the larger time
scale, the total particle populations of the systems decrease,
apparently monotonically, with the vcut=59.1 mm s−1 trajec-
tory showing greater particle loss. On the smaller time scale,
however, as shown by the inset, the total particle populations
fluctuate rapidly, on a scale of roughly 1-10 particles per
time step.
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To provide a comparison with our truncated Wigner re-
sults, consider a simple model. For a homogeneous system,
and assuming that the third-order correlation function is both
spatially and temporally invariant, such that g�3��x , t�=g�3�,
Eq. �1� can be integrated to return the time-dependent total
particle number

N�t� =
N�0�

�1 +
6K3g�3�N�0�2

V2 t

. �43�

For our system, using g�3�=1, the model shows a smaller rate
of loss than that observed for either of our trajectories, as
shown by the dashed line in Fig. 1. This result is predicted by
Eq. �35�, as is the difference in the two trajectory popula-
tions.

IV. CONCLUSION

The truncated Wigner description of ultracold Bose gases
has many significant advantages over more traditional ap-
proaches, such as the Gross-Pitaevskii equation, and the ex-
tension outlined in this paper allows for the inclusion of
three-body recombination processes. We have shown that
within the validity regime of the Wigner truncation for two-
body scattering, three-body recombination can be described
using stochastic differential equations describing the evolu-
tion of a single trajectory, which can be solved using numeri-
cal techniques.
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APPENDIX: MATHEMATICAL DETAILS

Using the particular Wigner function given by Eq. �16� in
the full three-body recombination Wigner function equation
of motion, Eq. �15�, and evaluating all � /�� j ,� /�� j

* opera-
tors returns

� �W

�t
��TBR�

= 
� dx�− ���P
* − �P0

* ��P + �P
* ��P − �P0

���
�P
4 − 3
�P
2�P +
3

2
�P

2� + �3
�P
4 − 6
�P
2�P +
3

2
�P

2��P� �A1a�

�2nd� − ���P
* − �P0

* ��P − �P
* ��P − �P0

���6
�P
2 − 6�P��P + �6
�P
2 − 3�P��P
2

+ �6
�P
4 − 12
�P
2�P + 3�P
2 ��
�P − �P0


2 −
1

2 �
j�L

 j

2

� j
2� �A1b�

�3rd� +
3

2
���P

* − �P0

* �2�P
2 + �P

*2��P − �P0
�2��P − 3���P

* − �P0

* ��P + �P
* ��P − �P0

��

� �
�P
2�
�P − �P0

2 − �

j�L

 j

2

� j
2� + �P�
�P − �P0


2 −
1

2 �
j�L

 j

2

� j
2 −

3

2
�P��

+ 6
�P
2�P�2
�P − �P0

2 − �

j�L

 j

2

� j
2� − 3�P

2�2
�P − �P0

2 +

1

2 �
j�L

 j

2

� j
2 −

1

2
�P� �A1c�

�4th� + ���P
* − �P0

* �2�P
2 + �P

*2��P − �P0
�2��2
�P − �P0


2 − 3�
j�L

 j

2

� j
2� − ���P

* − �P0

* ��P + �P
* ��P − �P0

��

� �6
�P − �P0

2 − 6�

j�L

 j

2

� j
2��P + �6
�P − �P0


2 − 3�
j�L

 j

2

� j
2��P

2 �A1d�

FIG. 1. Total particle numbers for the sample trajectories of the
system described in the text. Main plot shows the populations for
�higher and lower solid lines� vcut= 44.3,59.1� mm s−1, together
with the results for the simple model �dashed line�. The inset shows
the population for the trajectory with vcut=44.3 mm s−1 over a sub-
set of the total time.
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�5th� − ���P
* − �P0

* ��P + �P
* ��P − �P0

���
�P − �P0

2 −�

j�L

 j

2

� j
2�2

+�3
�P − �P0

4 − 6
�P − �P0


2�
j�L

 j

2

� j
2 +

3

2��
j�L

 j

2

� j
2�2��P

�A1e�

�6th� � +
3

2

�P − �P0


6 − 3
�P − �P0

4�

j�L

 j

2

� j
2 + 3
�P − �P0


2��
j�L

 j

2

� j
2�2

− ��
j�L

 j

2

� j
2�3�W . �A1f�

Here the terms arising from the separate derivative orders are kept separated, as indicated on the left-hand side �first order
derivative terms are given on the first and second lines�. For compactness we have written �P=�P�x ,x�.
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