87 research outputs found

    miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development

    Get PDF
    MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased β-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal β-cell mass and function. Selective re-expression of miR-375 in β-cells of miR-375KO mice normalizes both, α- and β-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of β-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from β-cells. Furthermore, acute and profound β-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of β-cell mass and provide in vivo evidence for release of miRNAs from pancreatic β-cells. The small contribution of β-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for β-cell function but suggests a utility for the detection of acute β-cell death for autoimmune diabetes

    A Novel Bacterial Artificial Chromosome-Transgenic Podoplanin–Cre Mouse Targets Lymphoid Organ Stromal Cells in vivo

    Get PDF
    Stromal cells provide the structural foundation of secondary lymphoid organs (SLOs), and regulate leukocyte access and cell migration within the different compartments of spleen and lymph nodes (LNs). Furthermore, several stromal cell subsets have been implied in shaping of T cell responses through direct presentation of antigen. Despite significant gain of knowledge on the biology of different SLO-resident stromal cell subsets, their molecular and functional characterization has remained incomplete. To address this need, we have generated a bacterial artificial chromosome-transgenic mouse model that utilizes the podoplanin (pdpn) promoter to express the Cre-recombinase exclusively in stromal cells of SLOs. The characterization of the Pdpn–Cre mouse revealed transgene expression in subsets of fibroblastic reticular cells and lymphatic endothelial cells in LNs. Furthermore, the transgene facilitated the identification of a novel splenic perivascular stromal cell subpopulation that forms web-like structures around central arterioles. Assessment of the in vivo antigen expression in the genetically tagged stromal cells in Pdpn–Cre mice revealed activation of both MHC I and II-restricted TCR transgenic T cells. Taken together, stromal pdpn–Cre expression is well-suited to characterize the phenotype and to dissect the function of lymphoid organ stromal cells

    Absence of Evidence for MHC–Dependent Mate Selection within HapMap Populations

    Get PDF
    The major histocompatibility complex (MHC) of immunity genes has been reported to influence mate choice in vertebrates, and a recent study presented genetic evidence for this effect in humans. Specifically, greater dissimilarity at the MHC locus was reported for European-American mates (parents in HapMap Phase 2 trios) than for non-mates. Here we show that the results depend on a few extreme data points, are not robust to conservative changes in the analysis procedure, and cannot be reproduced in an equivalent but independent set of European-American mates. Although some evidence suggests an avoidance of extreme MHC similarity between mates, rather than a preference for dissimilarity, limited sample sizes preclude a rigorous investigation. In summary, fine-scale molecular-genetic data do not conclusively support the hypothesis that mate selection in humans is influenced by the MHC locus

    Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Get PDF
    BACKGROUND: The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES) cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. RESULTS: Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B) was shown to be restricted to the inner cell mass (ICM) of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. CONCLUSION: Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent manner as STAT3 or Nanog

    Non-Hematopoietic Cells in Lymph Nodes Drive Memory CD8 T Cell Inflation during Murine Cytomegalovirus Infection

    Get PDF
    During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events

    Functionally Relevant Domains of the Prion Protein Identified In Vivo

    Get PDF
    The prion consists essentially of PrPSc, a misfolded and aggregated conformer of the cellular protein PrPC. Whereas PrPC deficient mice are clinically healthy, expression of PrPC variants lacking its central domain (PrPΔCD), or of the PrP-related protein Dpl, induces lethal neurodegenerative syndromes which are repressed by full-length PrP. Here we tested the structural basis of these syndromes by grafting the amino terminus of PrPC (residues 1–134), or its central domain (residues 90–134), onto Dpl. Further, we constructed a soluble variant of the neurotoxic PrPΔCD mutant that lacks its glycosyl phosphatidyl inositol (GPI) membrane anchor. Each of these modifications abrogated the pathogenicity of Dpl and PrPΔCD in transgenic mice. The PrP-Dpl chimeric molecules, but not anchorless PrPΔCD, ameliorated the disease of mice expressing truncated PrP variants. We conclude that the amino proximal domain of PrP exerts a neurotrophic effect even when grafted onto a distantly related protein, and that GPI-linked membrane anchoring is necessary for both beneficial and deleterious effects of PrP and its variants

    TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo

    Get PDF
    Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family and is involved in cytokine signalling. In vitro analyses suggest that TYK2 also has kinase-independent, i.e., non-canonical, functions. We have generated gene-targeted mice harbouring a mutation in the ATP-binding pocket of the kinase domain. The Tyk2 kinase-inactive (Tyk2K923E) mice are viable and show no gross abnormalities. We show that kinase-active TYK2 is required for full-fledged type I interferon- (IFN) induced activation of the transcription factors STAT1-4 and for the in vivo antiviral defence against viruses primarily controlled through type I IFN actions. In addition, TYK2 kinase activity was found to be required for the protein’s stability. An inhibitory function was only observed upon over-expression of TYK2K923E in vitro. Tyk2K923E mice represent the first model for studying the kinase-independent function of a JAK in vivo and for assessing the consequences of side effects of JAK inhibitors

    C-type lectin receptor expression is a hallmark of neutrophils infiltrating the skin in epidermolysis bullosa acquisita

    Get PDF
    IntroductionInflammatory epidermolysis bullosa acquisita (EBA) is characterized by a neutrophilic response to anti-type VII collagen (COL7) antibodies resulting in the development of skin inflammation and blistering. The antibody transfer model of EBA closely mirrors this EBA phenotype.MethodsTo better understand the changes induced in neutrophils upon recruitment from peripheral blood into lesional skin in EBA, we performed single-cell RNA-sequencing of whole blood and skin dissociate to capture minimally perturbed neutrophils and characterize their transcriptome.ResultsThrough this approach, we identified clear distinctions between circulating activated neutrophils and intradermal neutrophils. Most strikingly, the gene expression of multiple C-type lectin receptors, which have previously been reported to orchestrate host defense against fungi and select bacteria, were markedly dysregulated. After confirming the upregulation of Clec4n, Clec4d, and Clec4e in experimental EBA as well as in lesional skin from patients with inflammatory EBA, we performed functional studies in globally deficient Clec4e−/− and Clec4d−/− mice as well as in neutrophil-specific Clec4n−/− mice. Deficiency in these genes did not reduce disease in the EBA model.DiscussionCollectively, our results suggest that while the upregulation of Clec4n, Clec4d, and Clec4e is a hallmark of activated dermal neutrophil populations, their individual contribution to the pathogenesis of EBA is dispensable

    Germ line transformation of mammals by pronuclear microinjection

    Full text link
    corecore