17 research outputs found

    Multiple Multi-Copper Oxidase Gene Families in Basidiomycetes – What for?

    Get PDF
    Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously

    Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains

    Get PDF
    The litter-degrading dung fungus Coprinopsis cinerea has the high number of seventeen different laccase genes. In this work, ten different monokaryons were compared in their ability to produce laccases in two different complete media at different temperatures. Few strains showed laccase activity at the optimal growth temperature of 37 °C. Nine of the strains gave laccase activities between 0.2 and 5.9 U mL(−1) at the suboptimal temperature of 25 °C in mKjalke medium. Laccase activities in YMG/T medium were detected for only three strains (0.5–4.5 U mL(−1)). Zymograms of supernatants from mKjalke medium resulted in total in 10 different laccase bands but strains differed in distribution. LC–MS/MS analysis with Mascot searches of the annotated C. cinerea genome identified isoenzymes from five different genes (Lcc1, Lcc2, Lcc5, Lcc9 and Lcc10) and of Lcc1 three and of Lcc5 two distinct electrophoretical forms. Lcc1 and Lcc5 were expressed in all laccase positive strains, but not all forms were found in all of the strains. Lcc2, Lcc9 and Lcc10 occurred only in three strains as minor laccases, indicating that Lcc1 and Lcc5 are the main laccases of C. cinerea secreted in liquid mKjalke medium. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10482-013-9883-7) contains supplementary material, which is available to authorized users

    Reply to A.S. Reese

    No full text

    Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    No full text
    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 ± 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI

    Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis

    No full text
    Background: Familial multiple coagulation factor deficiencies (FMCFDs) are a group of inherited hemostatic disorders with the simultaneous reduction of plasma activity of at least two coagulation factors. As consequence, the type and severity of symptoms and the management of bleeding/thrombotic episodes vary among patients. The aim of this study was to identify the underlying genetic defect in patients with FMCFDs. Methods: Activity levels were collected from the largest cohort of laboratory-diagnosed FMCFD patients described so far. Genetic analysis was performed using next-generation sequencing. Results: In total, 52 FMCFDs resulted from coincidental co-inheritance of single-factor deficiencies. All coagulation factors (except factor XII (FXII)) were involved in different combinations. Factor VII (FVII) deficiency showed the highest prevalence. The second group summarized 21 patients with FMCFDs due to a single-gene defect resulting in combined FV/FVIII deficiency or vitamin K–dependent coagulation factor deficiency. In the third group, nine patients with a combined deficiency of FVII and FX caused by the partial deletion of chromosome 13 were identified. The majority of patients exhibited bleeding symptoms while thrombotic events were uncommon. Conclusions: FMCFDs are heritable abnormalities of hemostasis with a very low population frequency rendering them orphan diseases. A combination of comprehensive screening of residual activities and molecular genetic analysis could avoid under- and misdiagnosis

    Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis

    No full text
    Background: Familial multiple coagulation factor deficiencies (FMCFDs) are a group of inherited hemostatic disorders with the simultaneous reduction of plasma activity of at least two coagulation factors. As consequence, the type and severity of symptoms and the management of bleeding/thrombotic episodes vary among patients. The aim of this study was to identify the underlying genetic defect in patients with FMCFDs. Methods: Activity levels were collected from the largest cohort of laboratory-diagnosed FMCFD patients described so far. Genetic analysis was performed using next-generation sequencing. Results: In total, 52 FMCFDs resulted from coincidental co-inheritance of single-factor deficiencies. All coagulation factors (except factor XII (FXII)) were involved in different combinations. Factor VII (FVII) deficiency showed the highest prevalence. The second group summarized 21 patients with FMCFDs due to a single-gene defect resulting in combined FV/FVIII deficiency or vitamin K–dependent coagulation factor deficiency. In the third group, nine patients with a combined deficiency of FVII and FX caused by the partial deletion of chromosome 13 were identified. The majority of patients exhibited bleeding symptoms while thrombotic events were uncommon. Conclusions: FMCFDs are heritable abnormalities of hemostasis with a very low population frequency rendering them orphan diseases. A combination of comprehensive screening of residual activities and molecular genetic analysis could avoid under- and misdiagnosis
    corecore