64 research outputs found

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    Quantum and classical echoes in scattering systems described by simple Smale horseshoes

    Full text link
    We explore the quantum scattering of systems classically described by binary and other low order Smale horseshoes, in a stage of development where the stable island associated with the inner periodic orbit is large, but chaos around this island is well developed. For short incoming pulses we find periodic echoes modulating an exponential decay over many periods. The period is directly related to the development stage of the horseshoe. We exemplify our studies with a one-dimensional system periodically kicked in time and we mention possible experiments.Comment: 7 pages with 6 reduced quality figures! Please contact the authors ([email protected]) for an original good quality pre-prin

    Self-pulsing effect in chaotic scattering

    Full text link
    We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in parameters of the system for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. In this situation, in classical systems, decay from the interaction region is algebraic, while in quantum systems it is exponential due to tunneling. In both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one dimensional models and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and full-resolution figures are available at http://www.cicc.unam.mx/~mejia

    Phase-Space Volume of Regions of Trapped Motion: Multiple Ring Components and Arcs

    Full text link
    The phase--space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, sudden reductions in the phase-space volume or gaps are observed at specific values of the parameter which tunes the dynamics; these locations are approximated by the stability resonances. The latter are defined by a resonant condition on the stability exponents of a central linearly stable periodic orbit. We show that, for more than two degrees of freedom, these resonances can be excited opening up gaps, which effectively separate and reduce the regions of trapped motion in phase space. Using the scattering approach to narrow rings and a billiard system as example, we demonstrate that this mechanism yields rings with two or more components. Arcs are also obtained, specifically when an additional (mean-motion) resonance condition is met. We obtain a complete representation of the phase-space volume occupied by the regions of trapped motion.Comment: 19 pages, 17 figure

    The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages

    Get PDF
    The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli

    Measuring Cosmic Rays with the RadMap Telescope on the International Space Station

    Get PDF
    The RadMap Telescope is a new radiation-monitoring instrument operating in the U.S. Orbital Segment (USOS) of the International Space Station (ISS). The instrument was commissioned in May 2023 and will rotate through four locations inside American, European, and Japanese modules over a period of about six months. In some locations, it will take data alongside operational, validated detectors for a cross-check of measurements. RadMap’s central detector is a finely segmented tracking calorimeter that records detailed depth-dose data relevant to studies of the radiation exposure of the ISS crew. It is also able to record particle-dependent energy spectra of cosmic-ray nuclei with energies up to several hundred MeV per nucleon. A unique feature of the detector is its ability to track nuclei with omnidirectional sensitivity at an angular resolution of two degrees. In this contribution, we present the design and capabilities of the RadMap Telescope and give an overview of the instrument’s commissioning on the ISS

    Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the effects of daily fine particulate exposure (PM) have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (≤6 hours) and arrhythmia, ischemia and myocardial infarction (MI) as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays.</p> <p>Methods</p> <p>Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs) published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles.</p> <p>Results</p> <p>Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events.</p> <p>Conclusions</p> <p>Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size fraction and concurrent gaseous pollutant exposures. Experimental studies appear more promising for elucidating the physiological mechanisms, time courses and causes than epidemiological studies which employ central pollution monitors for measuring effects and for assessing their time course. Although further studies are needed to strengthen the evidence, given that exposure to sub-daily high levels of PM (for a few hours) is frequent and given the suggestive evidence that sub-daily PM exposures are associated with the occurrence of cardiovascular effects, we recommend that persons with cardiovascular diseases avoid such situations.</p

    Ultrafeine Aerosolpartikel in der Au&szlig;enluft: Perspektiven zur Aufkl&auml;rung ihrer Gesundheitseffekte.

    No full text
    Der Beitrag zeigt Perspektiven f&uuml;r die Erforschung der gesundheitlichen Wirkung ultrafeiner Aerosolpartikel (UFP; Durchmesser &lt; 100 nm) in der Au&szlig;enluft auf. Obwohl UFP derzeit nicht Teil der gesetzlich geregelten Luftschadstoffe sind, legen ca. 50 epidemiologische Einzelstudien und toxikologische Erkenntnisse nahe, dass von UFP in der Au&szlig;enluft eine sch&auml;dliche Wirkung auf die menschliche Gesundheit ausgeht. In den kommenden Jahren werden in Deutschland einerseits gro&szlig;e Mengen von Gesundheitsdaten im Rahmen der Nationalen Kohorte (NAKO) erzeugt, andererseits signifikante Datenmengen von UFP durch das GUAN-Messnetz (GUAN: German Ultrafine Aerosol Network) erhoben. Es wird vorgeschlagen, diese Ressourcen in Form dreier konkreter epidemiologischer Studientypen f&uuml;r die Gesundheitsforschung an UFP zu nutzen: a) Zeitreihenstudien zu Kurzzeiteffekten (Sterberegister, Notfalleins&auml;tze, Krankenhauseinweisungen), b) Kohortenstudien zu Langzeiteffekten sowie c) Panelstudien zu Kurzzeiteffekten
    corecore