141 research outputs found

    A Discrete Age Structured Model of Hantavirus in a Rodent Reservoir in Paraguay

    Get PDF
    Many rodent-borne hantaviruses are zoonotic pathogens that can cause disease in humans through inhalation of aerosolized rodent excreta. To evaluate the prevalence of JaborĂą virus (JABV) over time within its rodent reservoir, Akodon montensis, we formulated a mathematical model with multiple rodent age classes and unique infection class progression features. We then parameterized the model with data collected from a survey of JABV harbored by Akodon montensis in the MbaracayĂș Reserve in Paraguay. Our model incorporates three types of infection over the lifetime of the rodent as well as a recovered class. A new feature of the model allows transition from the latent to the persistently-infected class. With a more complete age and infection structure, we are better able to identify the driving forces of epidemiology of hantaviruses in rodent populations

    The Missing Metric: An Evaluation of Fungal Importance in Wetland Assessments

    Get PDF
    To preserve wetland ecosystem function, federal and state agencies have developed assessment procedures to better manage remaining wetland areas. Currently, wetland assessments do not consider microorganisms when determining wetland quality. This is notable, because fungi are often the primary decomposers of organic material and thus important players in nutrient cycling. The objective of this study is to quantify how wetland quality, as measured using the Ohio Rapid Assessment Method (ORAM), relates to fungal community composition. We sampled soils from six depressional emergent marshes in Ohio belonging to each of the three ORAM quality categories, assessed soil physicochemical properties, and recovered fungal DNA. We then determined if wetland quality as expressed by the ORAM reflects soil health. Our results indicate that ORAM scoring methodology significantly explains differences in fungal community composition between wetlands. We also found that soil physicochemical properties not currently included in the ORAM are strong drivers of fungal community composition, particularly bulk density, pH, soil organic matter, and soil moisture. Overall, our results suggest fungal community composition reflects wetland quality as assessed by the ORAM, and that the ORAM and potentially other wetland assessments could better capture the soil environment by including easily measured soil physicochemical properties

    Dredged Sediments Contain Potentially Beneficial Microorganisms for Agriculture and Little Harmful Cyanobacteria

    Get PDF
    Abstract Introduction Soils worldwide are degrading, raising concerns about our ability to feed the growing global population. Soil amendments that can alleviate degradation are gaining attention. The application of sediments dredged from waterways to agricultural fields has increasing promise as a means for improving degraded soils. However, herbaceous plant species may have difficulty establishing on dredged material because of low nutrient availability, inhibitory levels of toxins, unsuitable moisture conditions and lack of microorganisms capable of ameliorating these characteristics. To counteract these issues, we sought to understand if the use of a cover crop would increase the abundance, diversity and function of beneficial soil microorganisms compared to harmful microorganisms in dredged sediments. Materials and Methods We collected soil samples from two 100% dredged sediment plots, one where winter cereal rye (Secale cereal) was grown as a winter cover crop and one left fallow over the winter, followed by traditional corn (Zea mays) planting. We sampled both plots three times during the growing season: before cover crop application, following cover crop application but before corn planting and following final corn harvest. We then used high‐throughput sequencing to identify the bacterial and fungal communities present in the samples. Results Our data show that cover crop application did not alter the microbial community in these plots. However, sampling time decreased species diversity and altered the composition of both fungal and bacterial communities recovered from these plots. Across both plots, microorganisms associated with carbon cycling were more abundant than those associated with harmful effects, including microcystin‐producing cyanobacteria, which were an extremely small portion of the overall community. Conclusion Our work suggests that dredged sediments have the potential to improve soil function through the addition of microorganisms associated with nutrient cycling, but a cover crop is not necessary to incur these benefits

    Developmental Exposure to Corn Grown on Lake Erie Dredged Material: A Preliminary Analysis

    Get PDF
    While corn is considered to be a healthy food option, common agricultural practices, such as the application of soil amendments, might be introducing contaminants of concern (COC) into corn plants. The use of dredged material, which contain contaminants such as heavy metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), as a soil amendment is increasing. Contaminants from these amendments can accumulate in corn kernels harvested from plants grown on these sediments and potentially biomagnify in organisms that consume them. The extent to which secondary exposure to such contaminants in corn affect the mammalian central nervous system has been virtually unexplored. In this preliminary study, we examine the effects of exposure to corn grown in dredge amended soil or a commercially available feed corn on behavior and hippocampal volume in male and female rats. Perinatal exposure to dredge-amended corn altered behavior in the open-field and object recognition tasks in adulthood. Additionally, dredge-amended corn led to a reduction in hippocampal volume in male but not female adult rats. These results suggest the need for future studies examining how dredge-amended crops and/or commercially available feed corn may be exposing animals to COC that can alter neurodevelopment in a sex-specific manner. This future work will provide insight into the potential long-term consequences of soil amendment practices on the brain and behavior

    Long-Term Exposure to an Invasive Fungal Pathogen Decreases Eptesicus fuscus Body Mass With Increasing Latitude

    Get PDF
    Abstract Invasive pathogens threaten wildlife health and biodiversity. Physiological responses of species highly susceptible to pathogen infections following invasion are well described. However, the responses of less susceptible species (relative to highly susceptible species) are not well known. Latitudinal gradients, which can influence body condition via Bergmann\u27s rule and/or reflect the time it takes for an introduced pathogen to spread geographically, add an additional layer for how mammalian species respond to pathogen exposure. Our goal was to understand how hosts less susceptible to pathogen infections respond to long‐term pathogen exposure across a broad latitudinal gradient. We examined changes in body mass throughout pathogen exposure time across the eastern United States (latitude ranging 30.5° N–44.8° N) in Eptesicus fuscus, a bat species classified as less susceptible to infection (relative to highly susceptible species) by the invasive fungal pathogen that causes white‐nose syndrome, Pseudogymnoascus destructans (Pd). Using 30 years of spring through fall adult capture records, we created linear mixed‐effects models for female and male bats to determine how mass or mass variation changed across the eastern United States from pre‐Pd invasion years through Pd invasion (0–1 years with Pd), epidemic (2–4 years with Pd), and established years (5+ years with Pd). By Pd establishment, all female and male bats decreased body mass with increasing latitude across a spatial threshold at 39.6° N. Differences in bat mass north and south of the spatial threshold progressively increased over Pd exposure time‐steps such that body mass was lower in northern latitudes compared to southern latitudes by Pd establishment. Results indicated that the progressive differences in E. fuscus body mass with latitude across the eastern United States are due to long‐term pathogen exposure; however, other environmental and ecological pressures may contribute to decreases in E. fuscus body mass with latitude and long‐term pathogen exposure. As pathogen introductions and emerging infectious diseases become more prevalent on the landscape, it is imperative that we understand how less susceptible species directly and indirectly respond to long‐term pathogen exposure in order to maintain population health in surviving species

    MycoDB, a global database of plant response to mycorrhizal fungi

    Get PDF
    Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems

    Coinfections by noninteracting pathogens are not independent and require new tests of interaction.

    Get PDF
    If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models

    Termite sensitivity to temperature affects global wood decay rates.

    Get PDF
    Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface

    Disturbance History and Environmental Characteristics Shape the Ectomycorrhizal Fungal Community of Two Varieties of Pinus clausa

    No full text
    The soil biota is diverse, yet the ecological and evolutionary processes that regulate species diversity and abundance of soil microorganisms across space and time remains elusive. In forest ecosystems, periodic disturbances which operate at different time scales represent one possible avenue by which diversity in the soil biota may be maintained due to their effect on genetic and phenotypic characteristics of the host and associated environment. To investigate the degree to which host variety and environmental characteristics shape the belowground ectomycorrhizal (ECM) fungal community, we sampled ten populations of a single pine species that has diverged into two genetically distinct varieties as a result of disturbance history (Pinus clausa var. immuginata and var. clausa) and used multivariate analysis to relate the community matrices of ECM fungi to host and environmental characteristics. Host variety was an important determinant of ECM fungal community structure and diversity at both the species level and when fungi were grouped into categories based on their substrate exploration and nutrient acquisition strategies independent of environmental characteristics. Overall, our results suggest that periodic disturbances which shape the host populations are also important for structuring the ECM fungal community independent of environmental effects
    • 

    corecore