348 research outputs found

    The Role of Bacteria and Fungi on Forage Degradation \u3ci\u3ein Vitro\u3c/i\u3e

    Get PDF
    The study was conducted to evaluate the interactive role of bacteria and fungi on forage degradation in vitro. Samples of Cynodon spp. were incubated in a 48-h in vitro gas assay with incubation medium containing or not antimicrobial substances. Treatments were: antibiotic (Ab), antifungal (Af), negative control (i.e. without antimicrobials) or positive control (i.e. with both Ab and Af). Three replicate assays were conducted and, in each assay the gas volume was measured at 3, 6, 9, 12, 24, 36 and 48 h of incubation. Data of cumulative gas production in each flask in each assay was fitted to a one-pool logistic model which generated three kinetic parameters: total gas production, rate of gas production and lag time. For statistical analysis, data of triplicates in each run were averaged and each run was considered a replicate. All variables were significantly affected by treatments (P \u3c 0.05). Compared to negative control treatment, Ab decreased total gas production and the rate of gas production by 26 and 13 %, respectively, and increased the lag time by 5.5 hours. The inclusion of Af also decreased total gas production and the rate of gas production by 5 and 29%, respectively, whereas decreased the lag time by 1 hour. When both Ab and Af were included in the incubation medium, gas production was almost completely inhibited and no convergent data of fermentation parameters was generated. In conclusion, bacteria had a major role on forage degradation what, however, was increased by fungi activity. The mechanisms by which fungi interact with bacteria for degrading forage into the rumen needs to be elucidated

    The discretised harmonic oscillator: Mathieu functions and a new class of generalised Hermite polynomials

    Full text link
    We present a general, asymptotical solution for the discretised harmonic oscillator. The corresponding Schr\"odinger equation is canonically conjugate to the Mathieu differential equation, the Schr\"odinger equation of the quantum pendulum. Thus, in addition to giving an explicit solution for the Hamiltonian of an isolated Josephon junction or a superconducting single-electron transistor (SSET), we obtain an asymptotical representation of Mathieu functions. We solve the discretised harmonic oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into an infinite set of algebraic equations which are later shown to be satisfied by the obtained solution. The proposed ansatz defines a new class of generalised Hermite polynomials which are explicit functions of the coupling parameter and tend to ordinary Hermite polynomials in the limit of vanishing coupling constant. The polynomials become orthogonal as parts of the eigenvectors of a Hermitian matrix and, consequently, the exponential part of the solution can not be excluded. We have conjectured the general structure of the solution, both with respect to the quantum number and the order of the expansion. An explicit proof is given for the three leading orders of the asymptotical solution and we sketch a proof for the asymptotical convergence of eigenvectors with respect to norm. From a more practical point of view, we can estimate the required effort for improving the known solution and the accuracy of the eigenvectors. The applied method can be generalised in order to accommodate several variables.Comment: 18 pages, ReVTeX, the final version with rather general expression

    Kinetic models with randomly perturbed binary collisions

    Full text link
    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases

    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

    Full text link
    This note, mostly expository, is devoted to Poincar{\'e} and log-Sobolev inequalities for a class of Boltzmann-Gibbs measures with singular interaction. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from convexity. We prove and characterize optimality in the case of quadratic confinement via a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gaussian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics admitting the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.Comment: Minor improvements. To appear in Geometric Aspects of Functional Analysis -- Israel Seminar (GAFA) 2017-2019", Lecture Notes in Mathematics 225

    Random walk on sparse random digraphs

    Get PDF
    International audienceA finite ergodic Markov chain exhibits cutoff if its distance to equilibrium remains close to its initial value over a certain number of iterations and then abruptly drops to near 0 on a much shorter time scale. Originally discovered in the context of card shuffling (Aldous-Diaconis, 1986), this remarkable phenomenon is now rigorously established for many reversible chains. Here we consider the non-reversible case of random walks on sparse directed graphs, for which even the equilibrium measure is far from being understood. We work under the configuration model, allowing both the in-degrees and the out-degrees to be freely specified. We establish the cutoff phenomenon, determine its precise window and prove that the cutoff profile approaches a universal shape. We also provide a detailed description of the equilibrium measure

    Integrated modeling and validation for phase change with natural convection

    Full text link
    Water-ice systems undergoing melting develop complex spatio-temporal interface dynamics and a non-trivial temperature field. In this contribution, we present computational aspects of a recently conducted validation study that aims at investigating the role of natural convection for cryo-interface dynamics of water-ice. We will present a fixed grid model known as the enthalpy porosity method. It is based on introducing a phase field and employs mixture theory. The resulting PDEs are solved using a finite volume discretization. The second part is devoted to experiments that have been conducted for model validation. The evolving water-ice interface is tracked based on optical images that shows both the water and the ice phase. To segment the phases, we use a binary Mumford Shah method, which yields a piece-wise constant approximation of the imaging data. Its jump set is the reconstruction of the measured phase interface. Our combined simulation and segmentation effort finally enables us to compare the modeled and measured phase interfaces continuously. We conclude with a discussion of our findings

    Composição química e valor nutritivo da silagem de genótipos de sorgo.

    Get PDF
    Made available in DSpace on 2018-05-01T01:09:00Z (GMT). No. of bitstreams: 1 JamirLuisSilva051818.pdf: 97496 bytes, checksum: 4a5635fe472027afd0ae56c942d182f9 (MD5) Previous issue date: 2018-04-30bitstream/item/176151/1/Jamir-Luis-Silva-051818.pd
    corecore