82 research outputs found

    A multimodal perspective on the composition of cortical oscillations:frontiers in human neuroscience

    Get PDF
    An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integratedelectroencephalography(EEG) and fMRI,orparallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification. Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1) oscillations, using human MEG and in-vitro rodent local field potentials. We compare spontaneous activity in the ~10Hz mu and 15-30Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V(LIII/LV) from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in-vitro M1, during an incision to sever lateral connections between M1 and S1 cortices. We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in sensorimotor cortex (SMC) appears to directly influence the power of the mu rhythm in LIII. These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, corticocortical connectivity is reflected in the power of the SMC mu rhythm. © 2013 Ronnqvist, Mcallister, Woodhall, Stanford and Hall

    Oscillatory beta activity mediates neuroplastic effects of motor cortex stimulation in humans

    Get PDF
    Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibithumanmotor cortex (M1) excitability and impair movement for ≀1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15-35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson's disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. © 2013 the authors

    Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV

    Get PDF
    In this updated and expanded version of our delayed Comment we show that the np backward cross section, as presented by the Uppsala group, is seriously flawed (more than 25 sd.). The main reason is the incorrect normalization of the data. We show also that their extrapolation method, used to determine the charged piNN coupling constant, is a factor of about 10 less accurate than claimed by Ericson et al. The large extrapolation error makes the determination of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended version of the Comment published in Phys. Rev. Letters 81, 5253 (1998

    Complete 0 hbar omega calculations of Gamow-Teller strengths for nuclei in the iron region

    Get PDF
    Gamow-Teller strengths for selected nuclei in the iron region (A~56) have been investigated via shell-model Monte Carlo calculations with realistic interactions in the complete fp basis. Results for all cases show significant quenching relative to single-particle estimates, in quantitative agreement with (n,p) data. The J=1,T=0 residual interaction and the f_{7/2}-f_{5/2} spin-orbit splitting are shown to play major roles in the quenching mechanism. Calculated B(E2, 2^+_1 -> 0^+_1) values are in fair agreement with experiment using effective charges of e_p=1.1e and e_n=0.1e.Comment: 13 pages + 1 postscript file, Caltech preprint MAP-16

    Gamow-Teller strength in 54Fe and 56Fe

    Full text link
    Through a sequence of large scale shell model calculations, total Gamow-Teller strengths (S+S_+ and S−S_-) in 54^{54}Fe and 56^{56}Fe are obtained. They reproduce the experimental values once the στ\sigma\tau operator is quenched by the standard factor of 0.770.77. Comparisons are made with recent Shell Model Monte Carlo calculations. Results are shown to depend critically on the interaction. From an analysis of the GT+ and GT−- strength functions it is concluded that experimental evidence is consistent with the 3(N−Z)3(N-Z) sum rule.Comment: 6 pages, RevTeX 3.0 using psfig, 7 Postscript figures included using uufile

    Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations

    Full text link
    This paper reports on the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions, both in the electron capture and electron decay direction, for 54,55,56^{54,55,56}Fe. The associated electron and positron capture rates for these isotopes of iron are also calculated in stellar matter. These calculations were recently introduced and this paper is a follow-up which discusses in detail the GT strength distributions and stellar capture rates of key iron isotopes. The calculations are performed within the framework of the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of GT strength functions and stellar capture rates which greatly increases the reliability of the results. For the first time experimental deformation of nuclei are taken into account. In the core of massive stars isotopes of iron, 54,55,56^{54,55,56}Fe, are considered to be key players in decreasing the electron-to-baryon ratio (YeY_{e}) mainly via electron capture on these nuclide. The structure of the presupernova star is altered both by the changes in YeY_{e} and the entropy of the core material. Results are encouraging and are compared against measurements (where possible) and other calculations. The calculated electron capture rates are in overall good agreement with the shell model results. During the presupernova evolution of massive stars, from oxygen shell burning stages till around end of convective core silicon burning, the calculated electron capture rates on 54^{54}Fe are around three times bigger than the corresponding shell model rates. The calculated positron capture rates, however, are suppressed by two to five orders of magnitude.Comment: 18 pages, 12 figures, 10 table

    The nucleon-nucleon interaction

    Get PDF
    We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The items discussed include charge-dependence, the precise value of the πNN\pi NN coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.Comment: 42 pages, 12 figures, iopart.cls style; Topical Review prepared for J. Phys. G: Nucl. Part. Phy

    Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and <it>C. albicans in vitro</it>.</p> <p>Methods</p> <p>Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of <it>Candida albicans </it>with an agar overlay method.</p> <p>Results</p> <p>At concentrations ranging from 10<sup>9 </sup>to 10<sup>5 </sup>CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of <it>L. acidophilus </it>La5 that executed only a slight inhibition of some strains at concentrations corresponding to 10<sup>7 </sup>and 10<sup>5 </sup>CFU/ml. At the lowest cell concentration (10<sup>3 </sup>CFU/ml), only <it>L. plantarum </it>299v and <it>L. plantarum </it>931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by <it>L. rhamnosus </it>LB21, <it>L. paracasei </it>F19, <it>L. reuteri </it>PTA 5289 and <it>L. reuteri </it>ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two <it>L. plantarum </it>strains and <it>L. reuteri </it>ATCC 55730 displayed the strongest inhibition on <it>Candida albicans</it>. No significant differences were observed between the reference strains and the clinical isolates.</p> <p>Conclusion</p> <p>The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and <it>Candida albicans in vitro</it>.</p

    Shell-model Monte Carlo studies of fp-shell nuclei

    Get PDF
    We study the gross properties of even-even and N=ZN=Z nuclei with A=48−64A=48-64 using shell-model Monte Carlo methods. Our calculations account for all 0ℏω0 \hbar \omega configurations in the fpfp-shell and employ the modified Kuo-Brown interaction KB3. We find good agreement with data for masses and total B(E2)B(E2) strengths, the latter employing effective charges ep=1.35ee_p=1.35e and en=0.35ee_n=0.35e. The calculated total Gamow-Teller strengths agree consistently with the B(GT+)B(GT_+)-values deduced from (n,p)(n,p) data if the shell model results are renormalized by 0.640.64, as has already been established for sdsd-shell nuclei. The present calculations therefore suggest that this renormalization (i.e., gA=1g_A=1 in the nuclear medium) is universal.Comment: 20 pages, 7 figures, Caltech Preprint

    Fine-Grid Calculations for Stellar Electron and Positron Capture Rates on Fe-Isotopes

    Full text link
    The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (YeY_{e}) of the core material. It is suggested that the temporal variation of YeY_{e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly 54,55,56^{54,55,56}Fe, are considered to be key players in controlling YeY_{e} ratio via electron capture on these nuclide. Recently an improved microscopic calculation of weak interaction mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the YeY_{e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on 54,55,56^{54,55,56}Fe. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.Comment: 21 pages, 6 ps figures and 2 table
    • 

    corecore