27 research outputs found
Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions
Fast and efficient: DNA strands, modified with the novel bioorthogonal reporters sydnones, undergo fast and efficient labeling with cyclooctynes and have the potential to become essential tools for imaging DNA and possibly RNA in cells.
Sydnones are highly stable mesoionic 1,3-dipoles that react with cyclooctynes through strain-promoted sydnone-alkyne cycloaddition (SPSAC). Although sydnones have been shown to be valuable bioorthogonal chemical reporters for the labeling of proteins and complex glycans, nucleic acids have not yet been tagged by SPSAC. Evaluation of SPSAC kinetics with model substrates showed fast reactions with cyclooctyne probes (up to k=0.59â
Mâs), and two different sydnones were effectively incorporated into both 2â-deoxyuridines at position 5, and 7-deaza-2â-deoxyadenosines at position 7. These modified nucleosides were synthetically incorporated into single-stranded DNAs, which were successfully postsynthetically labeled with cyclooctyne probes both inâ
vitro and in cells. These results show that sydnones are versatile bioorthogonal tags and have the premise to become essential tools for tracking DNA and potentially RNA in living cells
Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege
Microglial cells maintain the immunological integrity of the healthy brain and can exert protection from traumatic injury. During ischemic tissue damage such as stroke, peripheral immune cells acutely infiltrate the brain and may exacerbate neurodegeneration. Whether and how microglia can protect from this insult is unknown. Polymorphonuclear neutrophils (PMNs) are a prominent immunologic infiltrate of ischemic lesions in vivo. Here, we show in organotypic brain slices that externally applied invading PMNs massively enhance ischemic neurotoxicity. This, however, is counteracted by additional application of microglia. Time-lapse imaging shows that microglia exert protection by rapid engulfment of apoptotic, but, strikingly, also viable, motile PMNs in cell culture and within brain slices. PMN engulfment is mediated by integrin- and lectin-based recognition. Interference with this process using RGDS peptides and N-acetyl-glucosamine blocks engulfment of PMNs and completely abrogates the neuroprotective function of microglia. Thus, engulfment of invading PMNs by microglia may represent an entirely new mechanism of CNS immune privilege
Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression
Background: In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. Methodology/Principal Findings: We have analyzed the dynamics of Jacobâs nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD i
Transgenic mice expressing a human apolipoprotein[a] allele.
The most important determinant of plasma levels of Lp[a] are sequence differences at the highly polymorphic apolipoprotein[a] (apo[a]) locus. To define the sequences that mediate the regulation of apo[a] expression, we cloned a 370 kb DNA fragment that included a 130 kb apo[a] gene, and 40 kb 5'- and 200 kb 3'-flanking region from an individual with high plasma levels of Lp[a] using a YAC vector. This genomic clone was used to generate transgenic mice. In the YAC-apo[a] transgenic mouse, apo[a] was only expressed in the liver, as it is in humans. The mean serum level of apo[a] in 4-week-old YAC-apo[a] transgenic mice was 20 mg/dl. In the female mice the levels of apo[a] varied over a 1.5-fold range during the 4-day estrus cycle and the levels correlated directly with serum progesterone levels. The serum levels of apo[a] decreased to almost undetectable level in male mice after puberty and this decrease was reversed by castration. Ingestion of a high-fat diet resulted in a approximately 100-fold fall in hepatic apo[a] mRNA levels and >60-fold decrease in serum apo[a] levels. To delimit the control elements that mediate tissue-specific and sex hormone-responsive apo[a] transcription, we derived a reporter YAC in which 40 kb of 5' flanking sequences from the cloned apo[a] allele were linked to a luciferase reporter gene. Analysis of four independent transgenic lines revealed no hepatic luciferase expression, suggesting that important cis -acting elements located outside the apo[a] 5'-flanking region are necessary for in vivo expression of apo[a]