97 research outputs found
Entangling power of baker's map: Role of symmetries
The quantum baker map possesses two symmetries: a canonical "spatial"
symmetry, and a time-reversal symmetry. We show that, even when these features
are taken into account, the asymptotic entangling power of the baker's map does
not always agree with the predictions of random matrix theory. We have verified
that the dimension of the Hilbert space is the crucial parameter which
determines whether the entangling properties of the baker are universal or not.
For power-of-two dimensions, i.e., qubit systems, an anomalous entangling power
is observed; otherwise the behavior of the baker is consistent with random
matrix theories. We also derive a general formula that relates the asymptotic
entangling power of an arbitrary unitary with properties of its reduced
eigenvectors.Comment: 5 page
Statistical bounds on the dynamical production of entanglement
We present a random-matrix analysis of the entangling power of a unitary
operator as a function of the number of times it is iterated. We consider
unitaries belonging to the circular ensembles of random matrices (CUE or COE)
applied to random (real or complex) non-entangled states. We verify numerically
that the average entangling power is a monotonic decreasing function of time.
The same behavior is observed for the "operator entanglement" --an alternative
measure of the entangling strength of a unitary. On the analytical side we
calculate the CUE operator entanglement and asymptotic values for the
entangling power. We also provide a theoretical explanation of the time
dependence in the CUE cases.Comment: preprint format, 14 pages, 2 figure
Search for heavy lepton resonances decaying to a boson and a lepton in collisions at TeV with the ATLAS detector
A search for heavy leptons decaying to a boson and an electron or a muon is presented. The search is based on collision data taken at TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb, Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded
Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in 13 collisions with the ATLAS detector
Two searches for new phenomena in final states containing a same-flavour opposite-lepton (electron or muon) pair, jets, and large missing transverse momentum are presented. These searches make use of proton--proton collision data, collected during 2015 and 2016 at a centre-of-mass energy TeV by the ATLAS detector at the Large Hadron Collider, which correspond to an integrated luminosity of 14.7 fb, Both searches target the pair production of supersymmetric particles, squarks or gluinos, which decay to final states containing a same-flavour opposite-sign lepton pair via one of two mechanisms: a leptonically decaying Z boson in the final state, leading to a peak in the dilepton invariant-mass distribution around the Z boson mass; and decays of neutralinos (e.g. ), yielding a kinematic endpoint in the dilepton invariant-mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted in simplified models of gluino-pair (squark-pair) production, and provide sensitivity to gluinos (squarks) with masses as large as 1.70 TeV (980 GeV).publishedVersio
Search for heavy lepton resonances decaying to a boson and a lepton in collisions at TeV with the ATLAS detector
A search for heavy leptons decaying to a boson and an electron or a muon is presented. The search is based on collision data taken at TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb, Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded.publishedVersio
Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at √s = 7 TeV with the ATLAS detector
A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a TeX -boson, decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton–proton collisions at a centre-of-mass energy of TeX TeV with an integrated luminosity of TeX fb TeX . Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the TeX -boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models
Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data
This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and ϒ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲pT ≲pT 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≃ 10 GeV, to 4% at large rapidity and pT ≃ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented
Search for dark matter in events with heavy quarks and missing transverse momentum in collisions with the ATLAS detector
This article reports on a search for dark matter pair production in association with bottom or top quarks in of collisions collected at TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing -quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter--nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.publishedVersio
Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at √s=8 TeV with the ATLAS detector
A search is presented for the production of new heavy quarks that decay to a Z boson and a third-generation Standard Model quark. In the case of a new charge +2/3 quark (T ), the decay targeted is T → Zt, while the decay targeted for a new charge −1/3 quark (B) is B → Zb. The search is performed with a dataset corresponding to 20.3 fb−1 of pp collisions at TeX TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum Z boson candidate reconstructed from a pair of oppositely charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the absence or presence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a b-hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production mediated by the strong interaction, or single production mediated by the electroweak interaction. No significant excess of events above the Standard Model expectation is observed, and lower limits are derived on the mass of vector-like T and B quarks under various branching ratio hypotheses, as well as upper limits on the magnitude of electroweak coupling parameters.publishedVersio
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s = 13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements.publishedVersio
- …