3 research outputs found

    RANKL/RANK/OPG: Key Therapeutic Target in Bone Oncology.

    Get PDF
    International audienceCancer is one of the major leading causes of death all over the world. Primary and secondary bone tumors can significantly deteriorate the quality of life (QOL) and the activity of daily living (ADL) of the patients. These unwelcome diseases become a social and economic burden seriously. Thus, more effective therapies for both primary and secondary bone tumors are actually required. Bone homeostasis depends on the strictly balanced activities between bone formation by osteoblasts and bone resorption by osteoclasts. Imbalance of bone formation and resorption results in various bone diseases. Both primary and secondary bone tumors develop in the unique environment bone, it is therefore necessary to understand bone cell biology in tumoral bone environment. Recent findings strongly revealed the significant involvement of the receptor activator of nuclear factor kappaB ligand (RANKL)/RANK/osteoprotegerin (OPG) triad, the key regulators of bone remodeling in bone oncology. Indeed, RANKL/RANK blocking successfully prevented the development of bone metastases. Furthermore, some cancer cells express RANK which is involved in tumor cell migration. Thus, the regulation of this triad will be a rational, encouraged therapeutic hot spot in bone oncology. In this review, we summarize the accumulating knowledge of the RANKL/RANK/OPG triad and discuss about its therapeutic capability in primary and secondary bone tumors

    The second European interdisciplinary Ewing sarcoma research summit. A joint effort to deconstructing the multiple layers of a complex disease

    Get PDF
    Despite multimodal treatment, long term outcome for patients with Ewing sarcoma is still poor. The second "European interdisciplinary Ewing sarcoma research summit" assembled a large group of scientific experts in the field to discuss their latest unpublished findings on the way to the identification of novel therapeutic targets and strategies. Ewing sarcoma is characterized by a quiet genome with presence of an EWSR1-ETS gene rearrangement as the only and defining genetic aberration. RNA-sequencing of recently described Ewing-like sarcomas with variant translocations identified them as biologically distinct diseases. Various presentations adressed mechanisms of EWS-ETS fusion protein activities with a focus on EWS-FLI1. Data were presented shedding light on the molecular underpinnings of genetic permissiveness to this disease uncovering interaction of EWS-FLI1 with recently discovered susceptibility loci. Epigenetic context as a consequence of the interaction between the oncoprotein, cell type, developmental stage, and tissue microenvironment emerged as dominant theme in the discussion of the molecular pathogenesis and inter- and intra-tumor heterogeneity of Ewing sarcoma, and the difficulty to generate animal models faithfully recapitulating the human disease. The problem of preclinical development of biologically targeted therapeutics was discussed and promising perspectives were offered from the study of novel in vitro models. Finally, it was concluded that in order to facilitate rapid pre-clinical and clinical development of novel therapies in Ewing sarcoma, the community needs a platform to maintain knowledge of unpublished results, systems and models used in drug testing and to continue the open dialogue initiated at the first two Ewing sarcoma summits

    The second European interdisciplinary Ewing sarcoma research summit - A joint effort to deconstructing the multiple layers of a complex disease

    No full text
    Despite multimodal treatment, long term outcome for patients with Ewing sarcoma is still poor. The second >European interdisciplinary Ewing sarcoma research summit> assembled a large group of scientific experts in the field to discuss their latest unpublished findings on the way to the identification of novel therapeutic targets and strategies. Ewing sarcoma is characterized by a quiet genome with presence of an EWSR1-ETS gene rearrangement as the only and defining genetic aberration. RNAsequencing of recently described Ewing-like sarcomas with variant translocations identified them as biologically distinct diseases. Various presentations adressed mechanisms of EWS-ETS fusion protein activities with a focus on EWS-FLI1. Data were presented shedding light on the molecular underpinnings of genetic permissiveness to this disease uncovering interaction of EWS-FLI1 with recently discovered susceptibility loci. Epigenetic context as a consequence of the interaction between the oncoprotein, cell type, developmental stage, and tissue microenvironment emerged as dominant theme in the discussion of the molecular pathogenesis and inter- and intratumor heterogeneity of Ewing sarcoma, and the difficulty to generate animal models faithfully recapitulating the human disease. The problem of preclinical development of biologically targeted therapeutics was discussed and promising perspectives were offered from the study of novel in vitro models. Finally, it was concluded that in order to facilitate rapid pre-clinical and clinical development of novel therapies in Ewing sarcoma, the community needs a platform to maintain knowledge of unpublished results, systems and models used in drug testing and to continue the open dialogue initiated at the first two Ewing sarcoma summits.The conference was supported by the European Union’s Seventh Framework Programme grants 261743(ENCCA) and 259348 (ASSET).Peer Reviewe
    corecore