14 research outputs found

    Migrant economies: opportunity structures and potential in different city types

    Get PDF
    In this paper we wish to appraise how opportunities for migrant economies and their role in urban development may differ among various city types. The article contributes to the debate about the relationship of migrant economies and urban development and takes up two perspectives: it examines local opportunity structures for migrant entrepreneurs and sheds light on migrant economies’ potential for urban development. To address the many interrelated historical and contemporary processes in cities that influence migrant economies, we adopt the rescaling and the mixed embeddedness approaches. Studies on the role of migrant economies in urban development have predominantly focused on metropolises. Based on mixed-methods case studies in two medium-sized German cities, we ask how different city types influence the opportunities and potential of migrant economies for urban development.Peer Reviewe

    Energy Storage as Part of a Secure Energy Supply

    No full text
    The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However, it affects all areas of the energy system, albeit with different results. Within the energy system, various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers, and the demand-oriented supply ensures that energy demands are met at all times. However, renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly. Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy, store it in a storage medium for a suitable period of time, and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations, each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations. These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage, various technologies are currently in various stages of research, development, and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat, exploitation of phase transitions, adsorption/desorption processes, and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus, they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen. Hydrogen can be transformed by various processes into other energy carriers, which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system, chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector, it also creates new opportunities for increased flexibility, novel synergies, and additional optimization. Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications.The article describes various technologies for energy storage and their potential applications in the context of Germany's Energiewende, i.e. the transition towards a more sustainable energy system. Therefore, the existing legal framework defines some of the discussions and findings within the article, specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act, which is under constant reformation. While the article is written from a German perspective, the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology

    QURATOR: Innovative technologies for content and data curation

    No full text
    In all domains and sectors, the demand for intelligent systems to support the processing and generation of digital content is rapidly increasing. The availability of vast amounts of content and the pressure to publish new content quickly and in rapid succession requires faster, more efficient and smarter processing and generation methods. With a consortium of ten partners from research and industry and a broad range of expertise in AI, Machine Learning and Language Technologies, the QURATOR project, funded by the German Federal Ministry of Education and Research, develops a sustainable and innovative technology platform that provides services to support knowledge workers in various industries to address the challenges they face when curating digital content. The project’s vision and ambition is to establish an ecosystem for content curation technologies that significantly pushes the current state of the art and transforms its region, the metropolitan area Berlin-Brandenburg, into a global centre of excellence for curation technologies
    corecore