39 research outputs found

    Transcriptomic profiles and diagnostic biomarkers in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa reveal mechanistic insights of adaptative strategies upon desalination brine stress

    Get PDF
    Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.FRR was financed by Fondecyt #11220425 grant from ANID, Chile. CAS was financed by project ANID InES I + D 2021 (INID210013) and by Marie Skłodowska-Curie Action (888415). FBM was supported by a grant from Universidad de Alicante (Grant ID: FPUUA98)

    Silica Materials for Medical Applications

    Get PDF
    The two main applications of silica-based materials in medicine and biotechnology, i.e. for bone-repairing devices and for drug delivery systems, are presented and discussed. The influence of the structure and chemical composition in the final characteristics and properties of every silica-based material is also shown as a function of the both applications presented. The adequate combination of the synthesis techniques, template systems and additives leads to the development of materials that merge the bioactive behavior with the drug carrier ability. These systems could be excellent candidates as materials for the development of devices for tissue engineering

    Los Colores de la Salud

    No full text
    Trabajo presentado al VIII Congreso de ComunicaciĂłn Social de la Ciencia (CCSC): "Bienestar Planetario", celebrado en Barcelona entre el 29 de septiembre y el 1 de octubre (2021)Peer reviewe

    Olive pomace oil can improve blood lipid profile: a randomized, blind, crossover, controlled clinical trial in healthy and at-risk volunteers

    No full text
    [Purpose] This study aimed to assess the effect of dietary consumption of olive pomace oil (OPO) on blood lipids (primary outcome) and other cardiovascular disease (CVD) risk factors (blood pressure, inflammation and endothelial function as secondary outcomes).[Methods] A randomized, controlled, blind, crossover intervention was carried out in healthy and at-risk (hypercholesterolemic) subjects. Participants consumed daily 45 g of OPO or high-oleic acid sunflower oil (HOSO) as control oil during 4 weeks.[Results] OPO significantly reduced low-density lipoprotein cholesterol (LDL-C; P = 0.003) and apolipoprotein B (Apo B; P = 0.022) serum concentrations, and LDL/HDL ratio (P = 0.027) in healthy and at-risk volunteers. These effects were not observed with HOSO. Blood pressure, peripheral artery tonometry (PAT), endothelial function and inflammation biomarkers were not affected.[Conclusions] Regular consumption of OPO in the diet could have hypolipidemic actions in subjects at cardiovascular risk as well as in healthy consumers, contributing to CVD prevention.[Clinical trial registry] NCT04997122, August 8, 2021, retrospectively registered.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Peer reviewe

    Effect of olive pomace oil on cardiovascular health and associated pathologies

    No full text
    This article belongs to the Special Issue Effects of Polyphenol-Rich Foods on Chronic Diseases.[Background]: olive pomace oil (OPO) is a nutritionally relevant fat due to its high oleic acid content (C18:1) and the presence of a wide range of minor bioactive components. Although numerous in vitro and preclinical studies have been developed to study some of its characteristic components, the health effect of prolonged OPO consumption is unknown.[Methods]: a randomised, blinded, cross-over, controlled clinical trial was carried out in 31 normocholesterolemic and 37 hypercholesterolemic subjects. Participants consumed 45 g/day of OPO or sunflower oil (SO) for 4 weeks, each preceded by a 3-week run-in/wash-out phase with corn oil (CO).[Results]: regular consumption of OPO and SO had no statistically significant effect on any of the markers related to lipid profile, blood pressure, and endothelial function in both groups, except for eNOS levels, which were close to statistical significance due to the effect of oil (OPO and SO) (p = 0.083). A decrease in visceral fat (p = 0.028) in both groups was observed after OPO intake, accompanied by an increment of leptin (p = 0.017) in the hypercholesterolemic group.[Conclusion]: reducing visceral fat after prolonged OPO intake might contribute to improve cardiometabolic status, with a potentially positive effect on the vascular tone. Further clinical trials are needed to confirm the present results.Interprofesional del Aceite de Orujo de Oliva (ORIVA) financed the study (Ref. 20193239) and the predoctoral contract of S.G.R. (Ref. 20184930). The Community of Madrid partly financed the predoctoral contracts of M.A.S. (PEJD-2018-PRE/SAL-9104) and J.G.-C. (PEJD-2017-PRE/BIO-4225).Peer reviewe

    Olive pomace oil versus high oleic sunflower oil and sunflower oil: A comparative study in healthy and cardiovascular risk humans

    No full text
    This article belongs to the Special Issue Functional Foods and Neutraceuticals for the Prevention of Liver and Cardiovascular Diseases.Olive pomace oil (OPO) is mainly a source of monounsaturated fat together with a wide variety of bioactive compounds, such as triterpenic acids and dialcohols, squalene, tocopherols, sterols and aliphatic fatty alcohols. To date, two long-term intervention studies have evaluated OPO’s health effects in comparison with high oleic sunflower oil (HOSO, study-1) and sunflower oil (SO, study-2) in healthy and cardiovascular risk subjects. The present study integrates the health effects observed with the three oils. Two randomized, blinded, cross-over controlled clinical trials were carried out in 65 normocholesterolemic and 67 moderately hypercholesterolemic subjects. Each study lasted fourteen weeks, with two four-week intervention phases (OPO versus HOSO or SO), each preceded by a three-week run-in or washout period. Regular OPO consumption reduced total cholesterol (p = 0.017) and LDL cholesterol (p = 0.018) levels as well as waist circumference (p = 0.026), and only within the healthy group did malondialdehyde (p = 0.004) levels decrease after OPO intake versus HOSO. Contrarily, after the SO intervention, apolipoprotein (Apo) B (p < 0.001) and Apo B/Apo A ratio (p < 0.001) increased, and to a lower extent Apo B increased with OPO. There were no differences between the study groups. OPO intake may improve cardiometabolic risk, particularly through reducing cholesterol-related parameters and waist circumference in healthy and hypercholesterolemic subjects.Interprofesional del Aceite de Orujo de Oliva (ORIVA) financed the study and the predoctoral contract of SG-R. Community of Madrid partly financed the predoctoral contracts of JG-C (PEJD-2017-PRE/BIO-4225) and MAS (PEJD-2018-PRE/SAL-9104).Peer reviewe

    Influence of 8-week daily consumption of a new product combining green coffee hydroxycinnamates and beta-glucans on polyphenol bioavailability in subjects with overweight and obesity

    No full text
    Nutraceuticals based on plant extracts rich in polyphenols, as well as dietary fibres, are new means to fight overweight/obesity and associated diseases. However, to understand the potential effects of polyphenols on health it is critical to study their bioavailability and metabolic fate. Consumption of a green coffee phenolic extract (GCPE) in combination with oat beta-glucan (BG) could affect the pharmacokinetic profile of the main polyphenols present in coffee (hydroxycinnamates). Moreover, the regular intake of the combination could also induce changes. Nine overweight men and women consumed a novel nutraceutical product containing 300 mg of green coffee hydroxycinnamic acids and 2.5 g of BG twice a day for 8 weeks. A pharmacokinetic study was carried out in blood and urine samples taken before (baseline) and at week 8 after the nutraceutical intervention, collecting samples at different times in a 0–24 h interval. Faecal samples were also obtained at 0 and 24 h after the intake of the nutraceutical at baseline and week 8. Phenolic metabolites were analysed by LC-MS-QToF. Results showed that polyphenols were differentially absorbed and extensively metabolized throughout the gastrointestinal tract. An apparent reduction in the excretion of small intestinal metabolites was accompanied by a tendency to increase colonic metabolites after sustained intake (p = 0.052). In conclusion, continued consumption of the GCPE/BG nutraceutical appears to enhance the absorption of hydroxycinnamates by increasing the colonic bioavailability of their derived metabolites compared to baseline, although the regular intake of the nutraceutical did not modify the metabolite profile in any of the biological samples.This research was funded by project AGL2015-69986-R from the Ministerio de Economía y Competitividad and grant PIE202070E184 funded by CSIC. MAS and JGC had predoctoral grants funded by Comunidad de Madrid (PEJD-2018-PRE/SAL-9104), respectively.Peer reviewe
    corecore