22 research outputs found

    Multidimensional sticky Brownian motions as limits of exclusion processes

    Full text link
    We study exclusion processes on the integer lattice in which particles change their velocities due to stickiness. Specifically, whenever two or more particles occupy adjacent sites, they stick together for an extended period of time, and the entire particle system is slowed down until the ``collision'' is resolved. We show that under diffusive scaling of space and time such processes converge to what one might refer to as a sticky reflected Brownian motion in the wedge. The latter behaves as a Brownian motion with constant drift vector and diffusion matrix in the interior of the wedge, and reflects at the boundary of the wedge after spending an instant of time there. In particular, this leads to a natural multidimensional generalization of sticky Brownian motion on the half-line, which is of interest in both queuing theory and stochastic portfolio theory. For instance, this can model a market, which experiences a slowdown due to a major event (such as a court trial between some of the largest firms in the market) deciding about the new market leader.Comment: Published at http://dx.doi.org/10.1214/14-AAP1019 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Can one hear the shape of a population history?

    Full text link
    Reconstructing past population size from present day genetic data is a major goal of population genetics. Recent empirical studies infer population size history using coalescent-based models applied to a small number of individuals. Here we provide tight bounds on the amount of exact coalescence time data needed to recover the population size history of a single, panmictic population at a certain level of accuracy. In practice, coalescence times are estimated from sequence data and so our lower bounds should be taken as rather conservative.Comment: 22 pages, 7 figures; v2 is significantly revised from v

    On the influence of the seed graph in the preferential attachment model.

    Get PDF
    Abstract We study the influence of the seed graph in the preferential attachment model, focusing on the case of trees. We first show that the seed has no effect from a weak local limit point of view. On the other hand, we conjecture that different seeds lead to different distributions of limiting trees from a total variation point of view. We take a first step in proving this conjecture by showing that seeds with different degree profiles lead to different limiting distributions for the (appropriately normalized) maximum degree, implying that such seeds lead to different (in total variation) limiting trees

    Election manipulation

    No full text

    On the Influence of the Seed Graph in the Preferential Attachment Model

    No full text
    We study the influence of the seed graph in the preferential attachment model, focusing on the case of trees. We first show that the seed has no effect from a weak local limit point of view. On the other hand, we conjecture that different seeds lead to different distributions of limiting trees from a total variation point of view. We take a first step in proving this conjecture by showing that seeds with different degree profiles lead to different limiting distributions for the (appropriately normalized) maximum degree, implying that such seeds lead to different (in total variation) limiting trees
    corecore