150 research outputs found

    Influence of iron on the gut microbiota in colorectal cancer

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/nu12092512Perturbations of the colonic microbiota can contribute to the initiation and progression of colorectal cancer, leading to an increase in pathogenic bacteria at the expense of protective bacteria. This can contribute to disease through increasing carcinogenic metabolite/toxin production, inducing inflammation, and activating oncogenic signaling. To limit disease progression, external factors that may influence the colonic microbiota need to be considered in patients with colorectal cancer. One major factor that can influence the colonic microbiota is iron. Iron is an essential micronutrient that is required by both prokaryotes and eukaryotes for cellular function. Most pathogenic bacteria have heightened iron acquisition mechanisms and therefore tend to outcompete protective bacteria for free iron. Colorectal cancer patients often present with anemia due to iron deficiency, and thus they require iron therapy. Depending upon the route of administration, iron therapy has the potential to contribute to a procarciongenic microbiota. Orally administered iron is the common treatment for anemia in these patients but can lead to an increased gut iron concentration. This suggests the need to reassess the route of iron therapy in these patients. Currently, this has only been assessed in murine studies, with human trials being necessary to unravel the potential microbial outcomes of iron therapy.Published onlin

    Stepped-wedge cluster-randomised controlled trial to assess the cardiovascular health effects of a managed aquifer recharge initiative to reduce drinking water salinity in southwest coastal Bangladesh: study design and rationale.

    Get PDF
    INTRODUCTION: Saltwater intrusion and salinisation have contributed to drinking water scarcity in many coastal regions globally, leading to dependence on alternative sources for water supply. In southwest coastal Bangladesh, communities have few options but to drink brackish groundwater which has been associated with high blood pressure among the adult population, and pre-eclampsia and gestational hypertension among pregnant women. Managed aquifer recharge (MAR), the purposeful recharge of surface water or rainwater to aquifers to bring hydrological equilibrium, is a potential solution for salinity problem in southwest coastal Bangladesh by creating a freshwater lens within the brackish aquifer. Our study aims to evaluate whether consumption of MAR water improves human health, particularly by reducing blood pressure among communities in coastal Bangladesh. METHODS AND ANALYSIS: The study employs a stepped-wedge cluster-randomised controlled community trial design in 16 communities over five monthly visits. During each visit, we will collect data on participants' source of drinking and cooking water and measure the salinity level and electrical conductivity of household stored water. At each visit, we will also measure the blood pressure of participants ≥20 years of age and pregnant women and collect urine samples for urinary sodium and protein measurements. We will use generalised linear mixed models to determine the association of access to MAR water on blood pressure of the participants. ETHICS AND DISSEMINATION: The study protocol has been reviewed and approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). Informed written consent will be taken from all the participants. This study is funded by Wellcome Trust, UK. The study findings will be disseminated to the government partners, at research conferences and in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02746003; Pre-results

    Adsorption characteristics of green 5-arylaminomethylene pyrimidine-2,4,6-triones on mild steel surface in acidic medium: Experimental and computational approach

    No full text
    The effect of electron withdrawing nitro (–NO2) and electron releasing hydroxyl (–OH) groups on corrosion inhibition potentials of 5-arylaminomethylenepyrimidine-2,4,6-trione (AMP) had been studied. Four AMPs tagged AMP-1, AMP-2, AMP-3 and AMP-4 were studied for their ability to inhibit mild steel corrosion in 1 M HCl using experimental and theoretical methods. Gravimetric results showed that inhibition efficiency of the studied inhibitors increases with increasing concentration. The results further revealed that that electron withdrawing nitro (–NO2) group decreases the inhibition efficiency of AMP, while electron donating hydroxyl (–OH) group increases the inhibition efficiency of AMP. SEM and AFM studies showed that the studied compounds inhibit mild steel corrosion by adsorbing at the metal/electrolyte interface and their adsorption obeyed the Temkin adsorption isotherm. Potentiodynamic polarization study revealed that studied inhibitors act as mixed type inhibitors with predominant effect on cathodic reaction. The inhibitive strength of the compounds might have direct relationship electron donating ability of the molecules as revealed by quantum chemical parameters. The order of interaction energies derived from Monte Carlo simulations is AMP-4 > AMP-3 > AMP-2 > AMP-1, which is in agreement with the order of inhibition efficiencies obtained from experimental measurements. Keywords: Multicomponent reactions, Green corrosion inhibitors, Acid solution, Theoretical studies, Langmuir adsorption isother
    corecore