6 research outputs found

    An Integrated Framework to Model Cellular Phenotype as a Component of Biochemical Networks

    Get PDF
    Identification of regulatory molecules in signaling pathways is critical for understanding cellular behavior. Given the complexity of the transcriptional gene network, the relationship between molecular expression and phenotype is difficult to determine using reductionist experimental methods. Computational models provide the means to characterize regulatory mechanisms and predict phenotype in the context of gene networks. Integrating gene expression data with phenotypic data in transcriptional network models enables systematic identification of critical molecules in a biological network. We developed an approach based on fuzzy logic to model cell budding in Saccharomyces cerevisiae using time series expression microarray data of the cell cycle. Cell budding is a phenotype of viable cells undergoing division. Predicted interactions between gene expression and phenotype reflected known biological relationships. Dynamic simulation analysis reproduced the behavior of the yeast cell cycle and accurately identified genes and interactions which are essential for cell viability

    Linear fuzzy gene network models obtained from microarray data by exhaustive search

    Get PDF
    BACKGROUND: Recent technological advances in high-throughput data collection allow for experimental study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are needed to interpret the resulting large and complex data sets. Rationally designed perturbations (e.g., gene knock-outs) can be used to iteratively refine hypothetical models, suggesting an approach for high-throughput biological system analysis. We introduce an approach to gene network modeling based on a scalable linear variant of fuzzy logic: a framework with greater resolution than Boolean logic models, but which, while still semi-quantitative, does not require the precise parameter measurement needed for chemical kinetics-based modeling. RESULTS: We demonstrated our approach with exhaustive search for fuzzy gene interaction models that best fit transcription measurements by microarray of twelve selected genes regulating the yeast cell cycle. Applying an efficient, universally applicable data normalization and fuzzification scheme, the search converged to a small number of models that individually predict experimental data within an error tolerance. Because only gene transcription levels are used to develop the models, they include both direct and indirect regulation of genes. CONCLUSION: Biological relationships in the best-fitting fuzzy gene network models successfully recover direct and indirect interactions predicted from previous knowledge to result in transcriptional correlation. Fuzzy models fit on one yeast cell cycle data set robustly predict another experimental data set for the same system. Linear fuzzy gene networks and exhaustive rule search are the first steps towards a framework for an integrated modeling and experiment approach to high-throughput "reverse engineering" of complex biological systems
    corecore