794 research outputs found

    A systematic review of economic evaluations of therapy in asthma

    Get PDF
    Katayoun Bahadori1, Bradley S Quon2, Mary M Doyle-Waters1, Carlo Marra3, J Mark FitzGerald21Centre for Clinical Epidemiology and Evaluation (C2E2), 2Department of Medicine, Respiratory Division, 3Faculty of Pharmaceutical Sciences, UBC, Vancouver, BC, CanadaBackground: Asthma’s cost-effectiveness is a major consideration in the evaluation of its treatment options. Our objective was to perform a systematic review of the cost-effectiveness of asthma medications.Methods: We performed a systematic search of MEDLINE, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, OHE-HEED, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessments Database, NHS Economic Evaluation Database, and Web of Science and reviewed references from key articles between 1990 and Jan 2008.Results: A total of 49 RCTs met the inclusion criteria. Maintenance therapy with inhaled corticosteroids was found to be very cost-effective and in uncontrolled asthmatics patients currently being treated with ICS, the combination of an ICS/LABA represents a safe, cost-effective treatment. The simplified strategy using budesonide and formoterol for maintenance and reliever therapy was also found to be as cost-effective as salmeterol/fluticasone plus salbutamol. Omalizumab was found to be cost-effective. An important caveat with regard to the published literature is the relatively high proportion of economic evaluations which are funded by the manufacturers of specific drug treatments.Conclusion: Future studies should be completed independent of industry support and ensure that the comparator arms within studies should include dosages of drugs that are equivalent.Keywords: asthma, medication, cost-effectiveness, cost of illness, economic cost

    Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn

    Get PDF
    Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells. Acute intra-arterial administration of EGCG to mesenteric vascular beds isolated ex vivo from WKY rats caused dose-dependent vasorelaxation. This was inhibitable by L-NAME (NO synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), or PP2 (Src family kinase inhibitor). Treatment of bovine aortic endothelial cells (BAEC) with EGCG (50 microm) acutely stimulated production of NO (assessed with NO-specific fluorescent dye DAF-2) that was inhibitable by l-NAME, wortmannin, or PP2. Stimulation of BAEC with EGCG also resulted in dose- and time-dependent phosphorylation of eNOS that was inhibitable by wortmannin or PP2 (but not by MEK inhibitor PD98059). Specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both EGCG-stimulated phosphorylation of Akt and eNOS as well as production of NO in BAEC. Treatment of BAEC with EGCG generated intracellular H(2)O(2) (assessed with H(2)O(2)-specific fluorescent dye CM-H(2)DCF-DA), whereas treatment with N-acetylcysteine inhibited EGCG-stimulated phosphorylation of Fyn, Akt, and eNOS. We conclude that EGCG has endothelial-dependent vasodilator actions mediated by intracellular signaling pathways requiring reactive oxygen species and Fyn that lead to activation of phosphatidylinositol 3-kinase, Akt, and eNOS. This mechanism may explain, in part, beneficial vascular and metabolic health effects of green tea consumption

    Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae

    Get PDF
    Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains grow poorly on xylose and require further improvement through rational engineering or evolutionary adaptation. To identify unknown genes that contribute to improved xylose fermentation in these recombinant S. cerevisiae, we performed genome-wide synthetic interaction screens to identify deletion mutants that impact xylose utilization of strains expressing the xylose isomerase gene XYLA from Piromyces sp. E2 alone or with an additional copy of the endogenous xylulokinase gene XKS1. We also screened the deletion mutant array to identify mutants whose growth is affected by xylose. Our genetic network reveals that more than 80 nonessential genes from a diverse range of cellular processes impact xylose utilization. Surprisingly, we identified four genes, ALP1, ISC1, RPL20B, and BUD21, that when individually deleted improved xylose utilization of both S. cerevisiae S288C and CEN.PK strains. We further characterized BUD21 deletion mutant cells in batch fermentations and found that they produce ethanol even the absence of exogenous XYLA. We have demonstrated that the ability of laboratory strains of S. cerevisiae to utilize xylose as a sole carbon source is suppressed, which implies that S. cerevisiae may not require the addition of exogenous genes for efficient xylose fermentation

    Secretion of Annexin II via Activation of Insulin Receptor and Insulin-like Growth Factor Receptor

    Get PDF
    Annexin II is secreted into the extracellular environment, where, via interactions with specific proteases and extracellular matrix proteins, it participates in plasminogen activation, cell adhesion, and tumor metastasis and invasion. However, mechanisms regulating annexin II transport across the cellular membrane are unknown. In this study, we used coimmunoprecipitation to show that Annexin-II was bound to insulin and insulin-like growth factor-1 (IGF-1) receptors in PC12 cells and NIH-3T3 cells overexpressing insulin (NIH-3T3(IR)) or IGF-1 receptor (NIH-3T3(IGF-1R)). Stimulation of insulin and IGF-1 receptors by insulin caused a temporary dissociation of annexin II from these receptors, which was accompanied by an increased amount of extracellular annexin II detected in the media of PC12, NIH-3T3(IR), and NIH-3T3(IGF-1R) cells but not in that of untransfected NIH-3T3 cells. Activation of a different growth factor receptor, the platelet-derived growth factor receptor, did not produce such results. Tyrphostin AG1024, a tyrosine kinase inhibitor of insulin and IGF-1 receptor, was shown to inhibit annexin II secretion along with reduced receptor phosphorylation. Inhibitors of a few downstream signaling enzymes including phosphatidylinositol 3-kinase, pp60c-Src, and protein kinase C had no effect on insulin-induced annexin II secretion, suggesting a possible direct link between receptor activation and annexin II secretion. Immunocytochemistry revealed that insulin also induced transport of the membrane-bound form of annexin II to the outside layer of the cell membrane and appeared to promote cell aggregation. These results suggest that the insulin receptor and its signaling pathways may participate in molecular mechanisms mediating annexin II secretion

    Musical components important for the Mozart K448 effect in epilepsy

    Get PDF
    There is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy

    Case Report: Dual nebulised antibiotics among adults with cystic fibrosis and chronic Pseudomonas infection [version 2; referees: 1 approved, 2 approved with reservations]

    Get PDF
    Pulmonary exacerbations in adults with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa (Psae) infection are usually treated with dual intravenous antibiotics for 14 days, despite the lack of evidence for best practice. Intravenous antibiotics are commonly associated with various systemic adverse effects, including renal failure and ototoxicity. Inhaled antibiotics are less likely to cause systematic adverse effects, yet can achieve airway concentrations well above conventional minimum inhibitory concentrations. Typically one inhaled antibiotic is used at a time, but dual inhaled antibiotics (i.e. concomitant use of two different inhaled antibiotics) may have synergistic effect and achieve better results in the treatment of exacerbations. We presented anecdotal evidence for the use of dual inhaled antibiotics as an acute treatment for exacerbations, in the form of a case report. A female in her early thirties with CF and chronic Psae infection improved her FEV1 by 5% and 2% with two courses of dual inhaled antibiotics to treat exacerbations in 2016. In contrast, her FEV1 changed by 2%, –2%, 0% and 2%, respectively, with four courses of dual intravenous antibiotics in 2016. Baseline FEV1 was similar prior to all six courses of treatments. The greater FEV1 improvements with dual inhaled antibiotics compared to dual intravenous antibiotics suggest the potential role of using dual inhaled antibiotics to treat exacerbations among adults with CF and chronic Psae infection, especially since a greater choice of inhaled anti-pseudomonal antibiotics is now available. A previous study in 1985 has looked at the concomitant administration of inhaled tobramycin and carbenicillin, by reconstituting antibiotics designed for parenteral administration. To our knowledge, this is the first literature to describe the concomitant use of two different antibiotics specifically developed for delivery via the inhaled route

    Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells

    Get PDF
    Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network
    corecore