4 research outputs found

    An integrative systems perspective on plant phosphate research

    Get PDF
    The case for improving crop phosphorus-use-efficiency is widely recognized. Although much is known about the molecular and regulatory mechanisms, improvements have been hampered by the extreme complexity of phosphorus (P) dynamics, which involves soil chemistry; plant-soil interactions; uptake, transport, utilization and remobilization within plants; and agricultural practices. The urgency and direction of phosphate research is also dependent upon the finite sources of P, availability of stocks to farmers and reducing environmental hazards. This work introduces integrative systems approaches as a way to represent and understand this complexity, so that meaningful links can be established between genotype, environment, crop traits and yield. It aims to provide a large set of pointers to potential genes and research practice, with a view to encouraging members of the plant-phosphate research community to adopt such approaches so that, together, we can aid efforts in global food security

    Identification of Traditional She Medicine Shi-Liang Tea Species and Closely Related Species Using the ITS2 Barcode

    No full text
    Traditional She medicine is part of China’s cultural heritage and has become remarkably popular worldwide. The Shi-Liang tea is made from the processed leaves of Chimonanthus salicifolius S. Y. Hu and Chimonanthus zhejiangensis M. C. Liu. To ensure the safety and efficacy of Shi-Liang tea, we used DNA barcoding based on the internal transcribed spacer 2 (ITS2) of nuclear ribosomal DNA to distinguish the original plant sources of Shi-Liang tea from closely related species. All 71 ITS2 sequences were aligned by Clustal-W, and genetic distances were computed using MEGA 6.0 according to the Kimura 2-parameter model. The results indicated that the sequence lengths of ITS2 regions of the original plants of Shi-Liang tea and closely related species ranged from 256 bp to 260 bp. Interspecific genetic distances ranged from 0 to 0.078. The neighbor-joining (NJ) tree showed that the original plants of Shi-Liang tea species can be easily differentiated from closely related species. Distinct molecular differences were found between the secondary structures of ITS2 sequences from Shi-Liang tea and closely related species. The results in the present investigation suggested that the ITS2 could be an effective DNA marker to identify the original plants of Shi-Liang tea and their closely related species. These DNA barcodes can greatly benefit the supervision of the commercial circulation of She medicine

    Ospapst1

    No full text
    corecore