2,552 research outputs found

    Radial Shearing Interferometer

    Get PDF
    Radial shearing interferometer (RSI) is one of the most powerful tools in many domains, especially in optical testing. RSI has compact size and good vibration immunity, which is adaptive to various environments, due to its common-path configuration. Moreover, it is very convenient application because no plane referencing wavefront is needed. The disadvantages of the conventional RSIs are that the distorted wavefront is hard to extract quickly and accurately from one radial shearography due to the phase extract algorithm is complex. Fortunately, the new RSIs can receive benefits from the accuracy of the methods of phase-shifting interferometry, and phase-shifting shearography is more sensitive than simple digital shearography. There are two mainly trend to the RSIs based on phase-shifting technique, i.e. instantaneous phase-shifting and compact size. In this chapter, a development process of RSI will be introduced briefly firstly, and then the some new RSIs based phase-shifting techniques in our work will be described in following parts, including initial RSI by using four-step polarization phase-shifting, modal wavefront reconstruction method for RSI with lateral shear and a new kind of compact RSI based micro-optics technique

    Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the Upper Huai River Basin of China

    Get PDF
    Despite the significant role of precipitation in the hydrological cycle, few studies have been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the performance of SWAT (soil and water assessment tool) models in large-sized river basins. In this study, both daily and hourly rainfall observations at 28 rainfall stations were used as inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin. Study results have demonstrated that the SWAT model with hourly rainfall inputs performed better than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its better capability of simulating peak flows during the flood season. The sub-daily SWAT model estimated that 58% of streamflow was contributed by baseflow compared to 34 % estimated by the daily model. Using the future daily and three-hour precipitation projections under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily SWAT model predicted a larger amount of monthly maximum daily flow during the wet years than the daily model. The differences between the daily and sub-daily SWAT model simulation results indicated that temporal rainfall resolution could have much impact on the simulation of hydrological process, streamflow, and consequently pollutant transport by SWAT models. There is an imperative need for more studies to examine the effects of temporal rainfall resolution on the simulation of hydrological and water pollutant transport processes by SWAT in river basins of different environmental conditions

    Genomic and proteomic profiling I: Leiomyomas in African Americans and Caucasians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical observations indicate that leiomyomas occur more frequently in African Americans compared to other ethnic groups with unknown etiology. To identify the molecular basis for the difference we compared leiomyomas form A. Americans with Caucasians using genomic and proteomic strategies.</p> <p>Methods</p> <p>Microarray, realtime PCR, 2D-PAGE, mass spectrometry, Western blotting and immunohistochemistry.</p> <p>Results</p> <p>Using Affymetrix U133A array and analysis based on P ranking (P < 0.01) 1470 genes were identified as differentially expressed in leiomyomas compared to myometrium regardless of ethnicity. Of these, 268 genes were either over-expressed (177 genes) or under-expressed (91 genes) based on P < 0.01 followed by 2-fold cutoff selection in leiomyomas of A. Americans as compared to Caucasians. Among them, the expression E2F1, RUNX3, EGR3, TBPIP, ECM2, ESM1, THBS1, GAS1, ADAM17, CST6, CST7, FBLN5, ICAM2, EDN1 and COL18 was validated using realtime PCR low-density arrays. 2D PAGE coupled with image analysis identified 332 protein spots of which the density/volume of 31 varied by greater than or equal to 1.5 fold in leiomyomas as compared to myometrium. The density/volume of 34 protein-spots varied by greater than or equal to 1.5 fold (26 increased and 8 decreased) in leiomyomas of A. Americans as compared to Caucasians. Tandem mass spectrometric analysis of 15 protein spots identified several proteins whose transcripts were also identified by microarray, including 14-3-3 beta and mimecan, whose expression was confirmed using western blotting and immunohistochemistry.</p> <p>Conclusion</p> <p>These findings imply that the level rather than the ethnic-specific expression of a number of genes and proteins may account for the difference between leiomyomas and possibly myometrium, in A. Americans and Caucasians. Further study using larger sample size is required to confirm these findings.</p

    Genomic and proteomic profiling II: Comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leiomyoma have often been compared to keloids because of their fibrotic characteristic and higher rate of occurrence among African Americans as compared to other ethnic groups. To evaluate such a correlation at molecular level this study comparatively analyzed leiomyomas with keloids, surgical scars and peritoneal adhesions to identify genes that are either commonly and/or individually distinguish these fibrotic disorders despite differences in the nature of their development and growth.</p> <p>Methods</p> <p>Microarray gene expression profiling and realtime PCR.</p> <p>Results</p> <p>The analysis identified 3 to 12% of the genes on the arrays as differentially expressed among these tissues based on P ranking at greater than or equal to 0.005 followed by 2-fold cutoff change selection. Of these genes about 400 genes were identified as differentially expressed in leiomyomas as compared to keloids/incisional scars, and 85 genes as compared to peritoneal adhesions (greater than or equal to 0.01). Functional analysis indicated that the majority of these genes serve as regulators of cell growth (cell cycle/apoptosis), tissue turnover, transcription factors and signal transduction. Of these genes the expression of E2F1, RUNX3, EGR3, TBPIP, ECM-2, ESM1, THBS1, GAS1, ADAM17, CST6, FBLN5, and COL18A was confirmed in these tissues using quantitative realtime PCR based on low-density arrays.</p> <p>Conclusion</p> <p>the results indicated that the molecular feature of leiomyomas is comparable but may be under different tissue-specific regulatory control to those of keloids and differ at the levels rather than tissue-specific expression of selected number of genes functionally regulating cell growth and apoptosis, inflammation, angiogenesis and tissue turnover.</p

    Deciphering of interactions between platinated DNA and HMGB1 by hydrogen/deuterium exchange mass spectrometry

    Get PDF
    A high mobility group box 1 (HMGB1) protein has been reported to recognize both 1,2-intrastrand crosslinked DNA by cisplatin (1,2-cis-Pt-DNA) and monofunctional platinated DNA using trans-[PtCl2(NH3)(thiazole)] (1-trans-PtTz-DNA). However, the molecular basis of recognition between the trans-PtTz-DNA and HMGB1 remains unclear. In the present work, we described a hydrogen/deuterium exchange mass spectrometry (HDX-MS) method in combination with docking simulation to decipher the interactions of platinated DNA with domain A of HMGB1. The global deuterium uptake results indicated that 1-trans-PtTz-DNA bound to HMGB1a slightly tighter than the 1,2-cis-Pt-DNA. The local deuterium uptake at the peptide level revealed that the helices I and II, and loop 1 of HMGB1a were involved in the interactions with both platinated DNA adducts. However, docking simulation disclosed different H-bonding networks and distinct DNA-backbone orientations in the two Pt-DNA-HMGB1a complexes. Moreover, the Phe37 residue of HMGB1a was shown to play a key role in the recognition between HMGB1a and the platinated DNAs. In the cis-Pt-DNA-HMGB1a complex, the phenyl ring of Phe37 intercalates into a hydrophobic notch created by the two platinated guanines, while in the trans-PtTz-DNA-HMGB1a complex the phenyl ring appears to intercalate into a hydrophobic crevice formed by the platinated guanine and the opposite adenine in the complementary strand, forming a penta-layer π–π stacking associated with the adjacent thymine and the thiazole ligand. This work demonstrates that HDX-MS associated with docking simulation is a powerful tool to elucidate the interactions between platinated DNAs and proteins
    • …
    corecore