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Abstract 

Despite the significant role of precipitation in the hydrological cycle, few studies have 

been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the 

performance of SWAT (soil and water assessment tool) models in large-sized river basins. In 

this study, both daily and hourly rainfall observations at 28 rainfall stations were used as 

inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin.
 
Study 

results have demonstrated that the SWAT model with hourly rainfall inputs performed better 

than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its 

better capability of simulating peak flows during the flood season. The sub-daily SWAT 

model estimated that 58% of streamflow was contributed by baseflow compared to 34 % 

estimated by the daily model. Using the future daily and three-hour precipitation projections 

under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily 

SWAT model predicted a larger amount of monthly maximum daily flow during the wet 

years than the daily model. The differences between the daily and sub-daily SWAT model 

simulation results indicated that temporal rainfall resolution could have much impact on the 

simulation of hydrological process, streamflow, and consequently pollutant transport by 

SWAT models. There is an imperative need for more studies to examine the effects of 

temporal rainfall resolution on the simulation of hydrological and water pollutant transport 

processes by SWAT in river basins of different environmental conditions. 
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1 Introduction 

Precipitation is one critical factor affecting the hydrological processes of river basins. 

One important research question in hydrology is how the spatial and temporal structure of 

precipitation affects the surface and groundwater movement in river basins (Paschalis et al. 

2014). There have been a number of studies evaluating the impacts of rainfall variability on 

runoff mostly through numerical experiments. Most of these previous studies are focused on 

examining the impacts of the spatial resolution of rainfall inputs (e.g. Moriasi and Starks 

2010; Masih et al. 2011; Wagner et al. 2012; Yoon et al. 2014; Wang et al. 2015) , while few 

examine the impacts of the temporal resolution of rainfall observations especially in the 

context of large-sized river basins. 

The Soil and Water Assessment Tool (SWAT) model is a basin-scale, physically-based, 

continuous simulation model that has proven to be a useful tool for studying the water 

quantity and water quality issues of the basins of a wide range of scales and environmental 

conditions around the world (Arnold et al. 2014). Regardless of their ultimate objectives, 

adequate simulation of the targeted watershed’s hydrologic balance is foundational for all 

SWAT applications. Gassman et al. (2007) gave an extensive review of 115 SWAT 

hydrologic studies, and concluded that their daily prediction results were generally poorer 

than monthly and annual predictions except in a few cases. They attributed the weaker 

results of some studies to inadequate spatial rainfall representation, inaccuracy in stream 

flow measurements, lack of model calibration, and relatively short calibration and validation 

periods. In the past few years, there has been much increase in using SWAT for daily 

hydrological simulations. Although the strongest results are still mostly reported by studies 

of annual and monthly time steps, there has been a trend of increase in the number of 

successful SWAT applications at the daily time step (Gassman et al. 2014).  

Many statistics are available to evaluate the SWAT simulation results. Nevertheless, the 

most widely used statistics have been the regression correlation coefficient (R
2
) and the 

Nash-Sutcliffe model efficiency (NSE) coefficient. The R
2
 value ranges from 0 to 1 and 

indicates the percentage of variance in measured data accounted for by the variance in the 

simulated results. The NSE value ranges from - to 1, and measures how well the simulated 

versus observed data match the 1:1 line. To date, absolute criteria for judging model 

http://apps.webofknowledge.com.ueaezproxy.uea.ac.uk:2048/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=V2oiUHDRTwql4D6MOtj&field=AU&value=Starks,%20PJ&ut=14718078&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
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performance have yet to be established. Generally, NSE values greater than 0.75 indicate 

very good performance, while values lower than 0.36 indicate unsatisfactory performance, 

and the values in between indicate satisfactory performance (Krause et al. 2005).  

Table 1 summarized a number of recent SWAT simulations of daily streamflow and 

their R
2
 and/or NSE statistics. The results of most of the applications could be considered as 

satisfactory except a few with very good or unsatisfactory results. For example, Fohrer et al. 

(2014) used SWAT to assess the environmental fate of the commonly used herbicides 

flufenacet and metazachlor in the 50 km
2
 Kielstau watershed in Northern Germany. They 

obtained very good simulation results for daily stream flow with an NSE value of 0.83 and 

0.76 for the calibration and validation period, respectively. Some SWAT applications have 

attributed their unsatisfactory performance in daily simulation to SWAT’s algorithms, and 

proposed modifications accordingly. For example, Lv et al. (2014) modified the algorithm 

for calculating the peak flow rate and peak time in SWAT and got better simulation results 

for the Pengjiahe Irrigation District in Hubei province of China.  

Despite SWAT’s capability to incorporate rainfall inputs of higher temporal resolution 

such as sub-daily and sub-hourly rainfalls, the majority of previous SWAT studies have been 

utilizing daily rainfall inputs. Few studies have been conducted to evaluate the impacts of the 

temporal resolution of rainfall inputs on the SWAT model’s daily streamflow simulation 

performance. The limited SWAT studies with rainfall inputs of higher temporal resolution 

have been mostly conducted in small-sized watersheds (Jeong et al. 2011), and their results 

have been contradictory. Maharjan et al. (2013) compared the performance of the SWAT 

models in simulating the amount of runoff from a 0.8 ha field-sized agricultural watershed 

with 15-min, 2-h, 6-h, and 12-h precipitation data, and concluded that the models generally 

yielded a better performance with the increase in the temporal resolution of precipitation. 

Kannan et al. (2007), on the other hand, found that their SWAT models’ simulation results 

of daily runoff using daily precipitation data were consistently better than those using 

30-min precipitation data at a small 141.5 ha watershed in England.  

Located about the mid-way between the Yellow River and Yangtze River, the Huai 

River is one of the major rivers in China. Originated from the Tongbai Mountains of Henan 

province, the Huai River flows 1000 km through four provinces and drains an area of 

174,000 km
2
. Located in the transition zone between the northern and southern climates in 
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China and subjected to the great influence of monsoon, the Huai River Basin is prone to the 

extreme events of both drought and flood. It is estimated that there have been 63 extreme 

floods and 46 extreme droughts in the Huai River Basin between 1470 and 2010. 

Establishing adequate hydrological models to understand the hydrological processes and 

evaluate the potential impacts of future climate change are of great importance to the 

sustainable management of the water resources and developing programs for climate change 

adaptation and mitigation in the basin.  

There have been some SWAT applications to simulate the monthly streamflow in the 

Huai River Basin as well as its sub-basins. For example, Zhang et al. (2013) developed a 

SWAT model to simulate the monthly stream flow at 45 stations from 1961 to 2000 in the 

Upper and Middle Huai River Basin. For 19 hydrological stations unregulated by reservoirs, 

their SWAT models’ NSE values ranged from 0.40 to 0.89 for calibration and from 0.19 to 

0.80 for validation. For 8 stations moderately regulated by reservoirs, NSE values ranged 

from 0.40 to 0.88 for calibration and from 0.46 to 0.78 for validation. For 12 stations highly 

regulated by reservoirs, NSE values ranged from 0.15 to 0.78 for calibration and -0.73 to 

0.63 for validation. Shi et al. (2013) used SWAT to simulate the monthly river flow at the 

Xixian sub-basin with a drainage area of 10191 km
2
 from 1984 to 2005, and obtained an 

NSE value of 0.90 and 0.91 for the calibration and validation period, respectively.  

  In this study, SWAT was used to simulate the daily streamflow at the Shakou 

hydrological station in the Upper Huai River Basin with a total drainage area of 5803 km
2
. 

Both daily and sub-daily rainfall observations at 28 rainfall stations were used as the model 

inputs to evaluate the impacts of the temporal resolution of rainfall on the daily simulation 

performance of the SWAT model in this large-sized basin. Projections of daily and sub-daily 

rainfall till 2050 by a regional climate model were then used as inputs to the SWAT models 

to examine the impacts of the temporal resolution of rainfall on the forecasts of future 

streamflow.  

2 Study region and methodology  

2.1 Study region 

Located above the Shakou hydrological station of the upstream Huai River, the Ru River 

Basin drains a total area of 5803 km
2
 (Fig. 1). With hills in the west and plains in the east, 

surface elevation in the basin ranges from 41 m to 977 m. Situated in the transition zone 
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between the northern subtropical and warm temperate climate, the basin is characterized 

with four distinct seasons. Its annual mean temperature falls between 14.6℃  and 15℃ , 

annual precipitation between 860mm and 980 mm, and annual solar radiation between 112 

and 120 kcal/cm
2
. Most of its precipitation occurs in the summer months from June to 

August.  

The Ru River Basin is predominantly an agricultural watershed, with farmland, 

woodland, and grassland accounting for 65.6%, 14.5%, and 5.1% of its land coverage, 

respectively. Nearly 90% of the basin is dominated by three soil types, which are 

yellow-cinnamon soil, lime concretion black soil, and calcareous fluvo-aquic soil in an order 

of decreasing distribution area (Fig. 2). All of the three types of soils are generally high in 

clay and silt contents with poor soil permeability. Meanwhile, they also tend to have low 

contents of organic matters and soil nutrients such as nitrogen and phosphorous. Despite the 

less ideal soil properties for agricultural cultivation, the availability of sufficient moisture 

and heat allows the widespread double-cropping practice (mainly wheat-corn rotation) in the 

basin, and the region has long been recognized as one important “granary” of China.  

2.2 Data sources 

Topographic, land use/land cover (LULC), soil, and hydro-meteorological data used for 

developing the SWAT model in the Ru River Basin were summarized in Table 2. The 25 m 

Digital Elevation Model (DEM) data was obtained from the National Geomatics Center of 

China. The 2005 LULC map (1:100,000) was derived from the classification of the 

Landsat-TM images by Chinese Academy of Science according to the Chinese National 

Standard of Land Use Classifications, which was further classified into the standard LULC 

categories of SWAT. The spatial distribution of soil types as well as some physical and 

chemical properties of the soil layers was extracted from the soil databases of Nanjing 

Institute of Soil Science (Shi et al. 2004; Yu et al. 2007a; Yu et al. 2007b; Shi et al. 2010). In 

addition, the SPAW( Soil – Plant – Atmosphere – Water) software was used to estimate the 

available water capacity and soil carbon content of the soil layers (Saxton and Willey 2005), 

and the nutrient contents (nitrate, organic nitrogen, labile phosphorous, and organic 

phosphorous) of the soil layers were obtained from local soil survey reports (Henan Province 

Soil Survey Office, 1995). 

To collect information on local crop management practices, face-to-face interviews with 
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116 farmers in 16 villages were conducted in the Ru River Basin based on a pre-constructed 

questionnaire. The interview results showed that the local farmers had been mostly 

practicing the wheat-corn rotation with rather homogeneous crop management practices. 

Generally, corn is planted in early June and harvested at the end of September, while wheat 

is planted in early October and harvested at the end of May. For corn, around 750 kg/ha of 

compound fertilizers and 188 kg/ha of urea are applied during planting, and an additional 

150 kg/ha of urea is applied in July. For wheat, around 750 kg/ha of compound fertilizers 

and 94 kg/ha of urea are applied during planting, and an additional 94 kg/ha of urea is 

applied in the subsequent February.  

   Daily meteorological records on precipitation, maximum and minimum temperature, 

sunshine hours, relative humidity, and wind speed at the Zhumadian weather station from 

1961 to 2011 were acquired from Chinese Meteorological Administration. Based on the 

historical weather data, the statistical parameters required by the SWAT weather generator 

were then calculated. The observed daily sunshine hours were also used to calculate daily 

solar radiation using the Angstrom-Prescott equation (Prescott 1940) whose empirical 

parameter values were obtained from Zuo et al. (1963). In addition, data on daily rainfall 

throughout the year and hourly rainfall in the flood season (May to September) at 28 rainfall 

stations from 2001 to 2011 were extracted from the annual reports on the Huai River Basin 

by Chinese Ministry of Water Resources. Daily streamflow at three hydrological stations 

(Lixin, Luzhuang, and Shakou) and daily outflow from three major reservoirs (Banqiao, 

Boshan, and Suyahu) from 2005 to 2011 were also extracted from the annual reports (Fig. 1).  

Hydrological models including SWAT have been frequently used to assess the potential 

impacts of climate change on the hydrological cycles of global and regional scales by using 

the projections of future climatic conditions as their weather forcings (Jha and Gassman 

2014; Li et al. 2014; Praskievicz and Bartlein 2014). There are a variety of methods to obtain 

the downscaled rainfall projections suitable for regional impact studies. For the Huai River 

Basin, some studies downscaled the monthly GCM precipitation projections to daily 

resolution using weather generators such as BCC/RCG-WG (Du et al. 2014) and LARS-WG 

(Duan and Mei 2014), while other studies utilized the outputs from regional climate models 

such as the CCLM (COSMO Model in Climate Mode) (Gao et al. 2014) and PRECIS 

(Providing Regional Climates for Impacts Studies) (Lu et al. 2013; Hu et al. 2014) models. 
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Nevertheless, most of these studies only utilized the projected rainfall data of daily 

resolution. 

In this study, projections of future precipitation and temperature till 2050 for the study 

region were extracted from the HadGEM3-RA outputs provided by the CORDEX 

(Coordinated Regional Climate Downscaling Experiment) -East Asia. The CORDEX 

initiative was created by the Task Force for Regional Climate Downscaling (TFRCD) of the 

World Climate Research Program to generate regional climate change projections for various 

terrestrial regions within the timeline of the IPCC Fifth Assessment Report and beyond. 

CORDEX-East Asia is the East-Asian branch of the CORDEX initiative that produces 

ensemble climate simulations based on multiple dynamical and statistical downscaling 

models forced by various global climate models.  

The HadGEM3-RA model is based on the global atmospheric HadGEM3 of the Met 

Office Hadley Centre (MOHC). The number of grid points in the HadGEM3-RA model is 

220 (west-east) by 183 (north-south), with a horizontal resolution of 0.44 degree 

(approximately 50km). Configuration of HadGEM3-RA is almost same as the HadGEM3-A, 

except that the dynamic settings were taken from the operational limited area model. 

Detailed descriptions of the HadGEM model could be found in Davies et al. (2005) and 

Martin et al. (2006). In this study, the daily and three-hour outputs of precipitation, and the 

daily outputs of minimum and maximum temperature of the HadGEM3-RA model under the 

Representative Concentration Pathways (RCP) 4.5 scenario were used.  

2.3 Spatiotemporal variability of precipitation 

There have been large spatial and temporal variations in precipitation in the Ru River 

Basin between 2001 and 2011 (Fig. 3). Annual mean precipitation of the 28 rainfall stations 

in the wettest year of 2003 was 1317 mm, more than twice the amount of 583 mm in the 

driest year of 2001. The range of annual precipitation among the 28 stations remained above 

320 mm throughout the 11-year period, with its coefficient of variation fluctuating between 

0.1 and 0.2. Fig. 4 showed the spatial distribution of the average annual precipitation 

between 2001 and 2011. Generally, annual precipitation tended to be the lowest in the 

eastern and northwestern parts of the basin, higher in the southwestern part, and the highest 

in the middle. 

 Despite the considerable variability in the spatiotemporal distribution of precipitation in 
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the Ru River Basin, its monthly precipitation exhibited a consistent pattern of concentration 

in the so-called flood season of May to September (Fig. 3). On the average, monthly 

precipitation from May to September was 92, 121, 255, 141, and 70 mm between 2001 and 

2011, which together could account for 73.8% of annual precipitation. Meanwhile, there was 

much more variability in precipitation in the flood season.  

2.4 SWAT model setup 

For this study, the latest version of SWAT2012 was used. In SWAT, the 

Penman–Monteith equation was used to calculate potential evaportranspiration, the 

rainfall-runoff routing was computed using the SCS curve number method in the daily model 

and the Green & Ampt infiltration method in the sub-daily model, and the channel routing 

was calculated according to the variable storage coefficient method.  

The Arc SWAT 2012 interface was used to prepare the input files for SWAT. The 25m 

DEM was used to delineate the sub-basins and river networks. Due to the continuing and 

extensive modifications to the study region’s natural drainage system, the river burn-in 

option was used to generate the river networks based on the 1:250,000 river network dataset 

obtained from the Computer Network Information Center of Chinese Academy of Science. 

Using a threshold area of 8000 ha, a total of 55 sub-basins were delineated (Fig. 1), which 

were further divided into 394 hydrological response units (HRUs) with similar 

characteristics of LULC, soils, and slopes. 

 There are three major reservoirs in the Ru River Basin: Banqiao, Boshan, and Suyahu. 

The Suyahu reservoir is the biggest with a maximum storage capacity of 1.66 billion m
3
, 

compared to 0.66 billion m
3 

of the Banqiao reservoir and 0.40 billion m
3 
of the Boshan 

reservoir. In SWAT, a reservoir is simulated as a water body with inflow, outflow, and 

change in storage. Although not suitable for real-time reservoir operation, the reservoir 

module of SWAT does provide sufficient accuracy for water balance assessment, especially 

when data on the reservoir outflows are available (Wang and Xia 2010). In this study, the 

three reservoirs were all simulated with their measured daily outflow rates. 

The SWAT models for the Ru River Basin were set up with daily and hourly rainfall 

inputs, respectively. Since they were only available for the flood season (May to September), 

hourly rainfall data were estimated by assuming a uniform distribution in daily rainfall for 

the other seven months. The SUFI-2 algorithm built in the Soil and Water Assessment Tool 
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Calibration and Uncertainty Procedure (SWAT-CUP) (Abbaspour 2011) was used for both 

the calibration and validation of the SWAT models. After a four-year warming-up period, 

daily stream flow records at the three hydrological stations from 2005 to 2008 were used for 

calibration, while the records from 2009 to 2011 were used for validation.  

2.5 Model uncertainty analysis 

Hydrological models are subjected to many types of uncertainties such as conceptual 

model uncertainty, input uncertainty, and parameter uncertainty. Different methodologies and 

algorithms have been developed to assess uncertainties in hydrological modeling, such as the 

Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), 

Sequential Uncertainty Fitting (SUFI2), and Markov chain Monte Carlo (MCMC) methods, 

which have been applied and sometimes compared in Chinese river basins such as the 

Chaohe Basin (Yang et al. 2008), Lake Dianchi Basin (Zhou et al. 2014), and Wenjing River 

Watershed (Wu and Chen 2015).  

The SUFI-2 algorithm uses the Latin hypercube sampling procedure, along with a global 

search algorithm that examines the behavior of the objective function by analyzing the 

Jacobian and Hessian matrices to progressively reduce the uncertainty in model parameters 

(Abbaspour et al. 2004). It accounts for all sources of uncertainties (including the conceptual 

model uncertainty, input uncertainty, and parameter uncertainty) for hydrological modeling 

by two measures known as the P-factor and the R-factor. The P-factor refers to the 

percentage of measured data bracketed by the 95% prediction uncertainty (95PPU), which is 

calculated at the 2.5% and 97.5% levels of the cumulative distribution of the output variable 

obtained through Latin hypercube sampling. The R-factor refers to the average thickness of 

the 95PPU band divided by the standard deviation of the measured data. Theoretically, the 

P-factor ranges from 0 to 1, and the R-factor ranges from 0 to infinity. The goodness of 

calibration and prediction uncertainty is judged on the basis of closeness of the P-factor to 1 

(i.e. all observations bracketed by the 95% prediction uncertainty) and the R-factor to 1 (i.e. 

achievement of rather small uncertainty band). A larger P-factor can often be achieved at the 

expense of a larger R-factor, and a balance must be reached between the two. 

 

3 Results and discussion 

3.1 Parameter comparison between the daily and sub-daily SWAT models 
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 Table 3 listed the 16 parameters included in the calibration and validation of both the 

daily and sub-daily SWAT models of the Ru River Basin. For the parameter Alpha_BF, its 

calibration bounding limits were estimated based on the historical daily discharge records of 

the hydrological stations using the baseflow filter program (Arnold and Allen 1999). Based 

on the daily discharge records at the three hydrological stations, the SWAT-CUP program 

was used to calibrate both the daily and sub-daily models with several iterations of 1000 

simulations. Because of its proximity to the massive and highly controlled Suyahu reservoir 

with a storage capacity of 1.66 billion m
3
, discharge at the downstream Shakou station is 

much influenced by the outflows from the reservoir. To avoid the potential bias caused by 

the reservoir-influenced station, much more weight was given to the two upstream stations 

of Lixing and Luzhuang during calibration.  

 Table 4 compared the parameter calibration results between the daily and sub-daily 

models. At the beginning of the calibration, the same parameter ranges were used in the 

calibration of both models. Generally, parameters showed more sensitivity in the sub-daily 

models than the daily models. At the beginning of the calibration, seven parameters 

(CN2_URML, CANMX_FRST, GW_DELAY, GWQMN, REVAPMN, SOL_K, CH_N2) were 

not significantly sensitive at the 0.10 level in the daily model compared to two parameters 

(CANMX_AGRR and CH_N1) in the sub-daily model. After calibration, all parameters were 

still sensitive except GWQMN and CH_N2 in the sub-daily model, while only six parameters 

(CN2_FRST, SURLAG, EPCO, ALPHA_BF, ESCO, CH_N1) remained significantly 

sensitive in the daily model.  

 Comparing the calibrated parameter values between the daily and sub-daily models 

indicated that their differences mainly lay in the parameters related to surface runoff and 

groundwater. In the calibrated sub-daily model, its larger moisture condition II curve 

numbers led to higher surface runoff potentials; its larger GW_DELAY value caused more 

delay for soil water to reach the shallow aquifer; and its larger GW_REVAP and lower 

REVAPMN values enabled more groundwater to diffuse upward and evaporate. These 

parameter differences seemed to indicate that the sub-daily model would predict more 

surface runoff and less baseflow contributing to river discharge than the daily model. 

However, water balance analysis of the Ru River Basin based on the two models yielded 

opposite results. The daily model estimated that 34% of the streamflow was contributed by 
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baseflow compared to a larger estimate of 58% by the sub-daily model. The counterintuitive 

simulation results could be due to the different runoff estimation methods used by the two 

models. The daily model used the SCS curve number method, while the sub-daily model 

used the Green & Ampt infiltration method. In addition, the baseflow filter program (Arnold 

and Allen 1999) gave an estimated range of 0.47-0.64 for baseflow contribution, which 

coincided with the sub-daily model results.  

3.2 Model performance comparison between the daily and sub-daily SWAT models 

 Table 5 compared the performances of the daily and sub-daily SWAT models at the 

three hydrological stations for both the calibration (2005-2008) and validation (2009-2011) 

periods. As mentioned above, since the discharge at the Shakou station is highly influenced 

by the Suyahu reservoir, whose daily outflow rates were used as model inputs, both the daily 

and sub-daily models were able to simulate its discharge rates well with both R
2
 and NSE 

above 0.90 during the calibration and validation periods. At the upstream Lixin and 

Luzhuang stations, however, the sub-daily model has yielded much better performance than 

the daily model during both calibration and validation. At the Luzhuang station, for example, 

the R
2
 of the sub-daily model is 0.75 and 0.70 during the calibration and validation period, 

respectively, much higher than 0.47 and 0.27 of the daily model. 

Fig. 5 showed the observed and simulated amount of daily discharge at the Lixin and 

Luzhuang stations throughout the modeling period. Fig. 6 compared the observed and 

simulated amount of peak flow for all of the 99 percentile stream discharge events at the two 

stations. Generally, the sub-daily model was able to simulate the peak flow rates better than 

the daily model, especially at the Luzhuang station. For example, on July 16 of 2010, daily 

discharge was simulated to be 14.8 m
3
/s and 27.8 m

3
/s by the daily and sub-daily model, 

respectively, compared to the observed amount of 31.3 m
3
/s at the Lixin station. Likewise, at 

the Luzhuang station, daily discharge was simulated to be 25.1 m
3
/s and 38.3 m

3
/s by the 

daily and sub-daily model, respectively, compared to the observed amount of 39.8 m
3
/s on 

July 18 of 2010. The better performance of the sub-daily model could be due to its ability to 

incorporate the highly concentrated rainstorm events. For example, the daily rainfall on July 

16, 2010 was 113.4 mm at the Lixin rainfall station, 72.8% of which occurred in a four-hour 

period between 3 and 7 am. With hourly rainfall as inputs, the sub-daily model was able to 

pick up the high rainfall variability and encompassed it in its simulation of streamflows.  
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In addition, the poorer streamflow simulation performance during the days with rainfalls 

of low to medium intensity also contributed to the low NSE and R
2
 of the daily model at the 

Luzhuang Station. Fig. 7 compared the observed and simulated amount of daily streamflow 

at the Luzhuang station on all of the raining days when daily streamflow observations fell 

between 1 and 50 m
3
/s. It can be seen that the daily model tended to be more sensitive to low 

and medium rainfall events, hence yielding significantly higher streamflow estimates than 

observed in many cases. A close examination of the HRUs of the sub-basin contributing to 

the Luzhuang station showed that around half of its land was covered by forests on steep 

slopes (>10%) and soils with high runoff potentials. Due to their conflicting impacts on 

runoff, the counterbalance among forestland, steep slope, and impermeable soils led to a 

complex pattern of rainfall-runoff responses under the rainfall of enormous variability in the 

sub-basin. Both Fig. 6 and Fig. 7 indicated that the daily SWAT model fell short of capturing 

the complex rainfall-runoff dynamics of the sub-basin by under-predicting streamflows 

during heavy storm events and over-predicting during the rainfall events of lower intensity. 

While the sub-daily model yielded better simulations of daily streamflow, especially 

peak flow during the flood season, than the daily model, it incurred larger modeling 

uncertainties. At the beginning of the calibration when the parameter range was the same, 

the P-factor and R-factor were 0.39 and 0.34 for the Lixin Station in the sub-daily model 

compared to 0.53 and 0.39 in the daily-model. Likewise, the P-factor and R-factor were 0.71 

and 0.40 for the Luzhuang Station in the sub-daily model compared to 0.92 and 0.43 in the 

daily-model. 

3.3 Peak flow projection comparison between the daily and sub-daily SWAT models 

Since the daily and sub-daily SWAT models have yielded considerable difference in the 

simulation of historical daily streamflow, especially peak flow, in the Ru River Basin, the 

two models were compared in their projections of peak flows till 2050 using the downscaled 

HadGEM3-RA outputs provided by the CORDEX-East Asia. In the HadGEM3-RA model, 

seven grid points were located either within or adjacent to the boundary of the Ru River 

Basin, whose precipitation and temperature projections were used as the inputs to the daily 

and sub-daily SWAT models. The weather generator of SWAT was used to generate the 

values for the other weather variables of solar radiation, relative humidity, and wind speed.  

Since future reservoir outflow rates were not available, the three reservoirs were all 
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simulated with the option of simulated target release in SWAT. Both the daily and sub-daily 

SWAT models were run with the HadGEM3-RA weather data from 2006 to 2050 with a 

five-year warming-up period. Due to the enormous impact of the Suyahu reservoir on the 

discharge at the outlet of the whole river basin, daily streamflow simulation results at the 

outlet of the sub-basin located along the River Ru and just above the Suyahu reservoir were 

used to make comparison between the daily and sub-daily models.    

Fig. 8 compared the projected amount of monthly maximum daily discharge during the 

flood season (May to September) from 2011 to 20150 by the daily and sub-daily SWAT 

models. Both models have predicted a large intra-annual as well as inter-annual variation in 

monthly maximum daily discharge during the next few decades. The projected amount of 

monthly maximum daily discharge largely corresponded between the two models, except 

that the sub-daily model tended to project higher peak flows during the relatively wet years. 

For example, the simulated amount of maximum daily discharge in July by the sub-daily 

model surpassed the amount simulated by the daily model by 240, 164, 142, 137, and 126 

m
3
/s in 2028, 2018, 2039, 2023, and 2034, respectively. This tendency of predicting higher 

peak flow by the sub-daily model was consistent with what was observed during the 

simulation of historical streamflow between 2005 and 2011.  

 

4 Conclusion 

 SWAT model has been increasingly used to make daily simulations of the hydrological 

processes in basins of a wide range of scales. Despite the significant role of precipitation in 

the hydrological cycle, few studies have been conducted to examine the impacts of the 

temporal resolution of rainfall inputs on the SWAT model’s performance in large-sized river 

basins. By comparing between the SWAT models with daily and hourly rainfall inputs, this 

study has demonstrated that the temporal resolution of rainfall inputs could have much 

impact on daily streamflow simulations by SWAT in the large-sized Ru River Basin. 

Generally, the sub-daily SWAT model was better at simulating peak flows during the flood 

season, which is a critical factor in the formulation of sound strategies and programs for 

flood control and water security in river basins. In addition, the daily and sub-daily models 

have also depicted different hydrological processes in the study region. For example, the 

sub-daily model estimated that 58% of streamflow was contributed by baseflow while the 
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daily model gave an estimate of 34%. The differences in hydrological process simulations 

could also have significant impact on using the SWAT model to simulate the pollutant 

transport and transformation processes in the river basin such as the nitrification and 

denitrification of nitrogen, which surely merits more in-depth investigations in the future. 

Despite its overall better performance in daily streamflow simulation in the Ru River 

Basin, the sub-daily SWAT model has exhibited higher parameter sensitivity and more 

prediction uncertainty. Due to the limited availability of sub-daily rainfall projection results 

in China, this study has not compared and evaluated the uncertainty associated with the 

SWAT model projections of future streamflow. In view of the limited SWAT studies 

utilizing the sub-daily rainfall inputs and their potentially significant impacts on the 

simulations of hydrological process, streamflow, and pollutant transport, there is an 

imperative need for more SWAT studies incorporating precipitation data of higher temporal 

resolution in river basins of different environmental conditions, so as to comprehensively 

assess the impacts of the temporal resolution of rainfall inputs on SWAT modeling results 

and the implications to the sustainable management of the river basin’s water resources as 

well as non-point source water pollution control. Meanwhile, reliable techniques for the 

downscaling, evaluation, and bias-correction of GCM outputs to the sub-daily resolution are 

needed for studying the impacts of climate change in river basins where sub-daily models 

are more applicable.  
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Table 1 Selected recent SWAT applications on daily streamflow simulation 

 

Reference Watershed 
Drainage Area 

(km2) 

Time Period Calibration Validation 

Calib. Valid. R2 NSE R2 NSE 

Akhavan et al. (2010) 
Hamadan–Bahar 

watershed (Iran) 
2460 2000–2008 1992–1999 0.38-0.83 0.27-0.77 0.27-0.75 -0.01-0.70 

Bekele and Knapp (2010) Fox River （U.S.） 6885 1960-1969 1950-1959  0.55-0.65  0.46-0.67 

Cerro et al. (2014) Alegria Watershed (Spain) 53 2009-2010 2010-2011 0.72 0.68 0.52 0.49 

Dessu and Melesse (2013) 
Mara River 

(Kenya/Tanzania) 
13750 1978–1982 1988–1992 0.69 0.68 0.44 0.43 

Fohrer et al. (2014) 
Kielstau Watershed 

(Germany) 
50 2003–2005 2006–2009 0.84 0.83 0.77 0.76 

Geza and McCray (2008) Turkey Creek (U.S.) 126 1998–2001  0.61-0.74 0.27-0.77  -0.01-0.70 

Glavan et al. (2011) River Axe (England) 400 1988-1997 1998-2005 0.62 0.62 0.53 0.47 

Gong et al. (2012) Daning River (China) 2010 2000-2003 2004-2007  0.68-0.85  0.44-0.80 

Mishra and Kar (2012) Banha Watershed (India) 16.95 1996 2000, 2001 0.93 0.70 0.76-0.83 0.62-0.70 

Oeurng et al. (2011) Save River (France) 1110 1999-2009  0.56 0.53   

Oliver et al. (2014) Big Haynes Creek (U.S.) 44 2003-2006 2007-2010 0.50 0.49 0.46 0.37 

Rouhani et al. (2007) 
Grote Nete River 

(Belgium) 
383 1986–1989 1990–1995 0.82 0.67 0.81 0.66 

Saha et al. (2014) Yass River (Australia) 1597 1993–2002 2003–2011 0.55 0.56 0.81 0.71 

Zhang et al. (2007) Luohe River ( China) 5239 1992 -1996 1997 -2000 0.82 0.65 0.74 0.54 
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Table 2 Data inputs for the SWAT model 

Data Category Scale/Extent Data Sources 

DEM 1:50,000 Chinese National Geomatics Center 

2005 Land Use/ Land Cover 1:100,000 Chinese Academy of Science 

Soil types and soil properties 1:1000,000 Nanjing Institute of Soil Science; 

Henan Province Soil Survey Office 

(1995); SPAW software 

River networks 1:250,000 Chinese Academy of Science 

Daily weather (1960-2011) 1 Station (Zhumadian) Chinese Meteorological 

Administration 

Daily and hourly rainfall 

(2001-2011)  

28 Stations
*
 Chinese Ministry of Water Resources 

Daily streamflow (2005-2011) 3 Stations (Lixin, 

Luzhuang, and Shakou) 

Chinese Ministry of Water Resources 

Daily reservoir outflow 

(2005-2011) 

3 Reservoirs (Banqiao, 

Boshan, and Suyahu) 

Chinese Ministry of Water Resources 

Crop management practices 116 farmers Field Survey 

*The 28 rainfall stations are Banqiao, Boshan, Caibukou, Daheiliuzhuang, Guizhuang, Hexiaodian, Hezhuang, Houmiao, 

Jialou, Laojun, Linzhuang, Lixin, Luodian, Mayigou, Quesan, Shahedian, Shakou, Shizhuang, Suiping, Taohuadian, 

Wulizhuang, Xiachen, Xiangheguan, Xiasong, Xiatun, Zangji, Zhugou, and Zhumadian. 
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Table 3 Parameters for calibrating the daily and sub-daily SWAT models 

Category Parameter Description 

Runoff 
CN2 Moisture condition II curve number 

SURLAG Surface runoff lag coefficient 

Plant 
EPCO Plant uptake compensation factor 

CANMX  Maximum canopy storage 

Groundwater 

ALPHA_BF Baseflow alpha factor 

GW_DELAY Groundwater delay 

GWQMN Threshold depth of water in the shallow aquifer required for 

return flow to occur 

REVAPMN Threshold depth of water in the shallow aquifer for "revap" to 

occur 

GW_REVAP Groundwater "revap" coefficient 

Soil 

SOL_AWC Available water capacity of the soil layer 

SOL_K Saturated hydraulic conductivity of the soil layer 

ESCO Soil evaporation compensation factor 

Channel 

CH_N1 Manning's "n" value for the tributary channels 

CH_N2 Manning's "n" value for the main channel 

CH_K1 Effective hydraulic conductivity in tributary channel alluvium 

CH_K2 Effective hydraulic conductivity in main channel alluvium 
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Table 4 Comparison of parameter values and sensitivities between the daily and sub-daily SWAT 

models 

Parameter 

Initial Models  Calibrated Models 

Range 
P Value  Daily  Sub-Daily 

Daily Sub-Daily  Value Range P Value  Value Range P Value 

CN2_AGRR 67-99 0.00 0.00  68.6-90.6a 68.5-92 0.22  75.8-97.8a 75-98 0.00 

CN2_FRST 43-87 0.00 0.00  45.2-84.2a 43 - 85 0.06  46.6-85.6a 45-86 0.00 

CN2_URML 62-92 0.89 0.06  64.1-79.1a 62 - 81 0.79  73.3-88.3a 67-89 0.00 

SURLAG 1-10 0.00 0.00  2.3 1-5 0.00  5.1 4.3-10.7 0.00 

EPCO 0.85-1 0.00 0.00  0.9 0.88-0.9 0.00  0.9 0.89-0.92 0.00 

CANMX_AGRR 1-10 0.00 0.72  6.5 4-7 0.54  7.4 5.5-7.7 0.00 

CANMX_FRST 5-25 0.13 0.00  10.5 4-13 0.19  23.3 16-25 0.00 

ALPHA_BF 0.03-0.1 0.00 0.00  0.03 0.02-0.06 0.09  0.06 0.03-0.07 0.00 

GW_DELAY 10-300 0.36 0.00  43.9 20-45 0.45  215.8 195-245 0.00 

GWQMN 10-150 0.46 0.00  54.1 39-57 0.40  83.8 75-115 0.29 

REVAPMN 10-200 0.34 0.00  141.6 125-145 0.50  69.1 45-70 0.02 

GW_REVAP 0.02-0.2 0.05 0.00  0.03 0.02-0.04 0.73  0.16 0.13-0.17 0.00 

SOL_AWC 0.12-0.36 0.00 0.00  0.15-0.34b 0.14-0.35 0.48  0.15-0.35b 0.14-0.36 0.00 

SOL_K 1.6-901.3 0.13 0.00  2.0-895.1b 1.9-895.1 0.74  1.8-801.9b 1.7-808.1 0.00 

ESCO 0.85-1 0.00 0.00  0.94 0.93-0.97 0.00  0.99 0.95-0.99 0.00 

CH_N1 0.19-0.32 0.00 0.23  0.29 0.27-0.31 0.02  0.26 0.23-0.26 0.02 

CH_N2 0.035-0.049 0.41 0.07  0.047 0.046-0.048 0.38  0.043 0.042-0.046 0.49 

CH_K1 0-50 0.00 0.00  1.0 0-3 0.15  4.5 2.7-8.1 0.02 

CH_K2 0-50 0.00 0.00  12.3 0-15 0.90  5.4 0-8.4 0.00 

a Show the range of the calibrated values for different hydrological groups. 

b Show the range of the calibrated values for different soil types and soil layers. 
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Table 5 Model evaluation statistics for the calibration and validation periods at the three 

hydrological stations 

Station 

Calibration (2005-2008)  Validation (2009-2011) 

Daily  Sub-Daily  Daily  Sub-Daily 

R
2
 NSE  R

2
 NSE  R

2
 NSE  R

2
 NSE 

Lixin 0.59 0.59  0.74 0.74  0.70 0.70  0.85 0.85 

Luzhuang 0.47 0.47  0.75 0.76  0.27 0.29  0.70 0.71 

Shakou 0.93 0.93  0.92 0.92  0.96 0.96  0.92 0.94 

  

 


