6 research outputs found

    Properties Of Carbon Nanostructures Prepared By Polyaniline Carbonization

    Get PDF
    Nanometric sponge-like structures have been prepared from the carburization of polyaniline-(emeradine salt) using a rapid immersion in hot-filament system fed with carbon dioxide, ethyl alcohol and argon. Fiber-like fragments of width in the range of 20 - 40 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements suggested that benzenoid rings and amide were present in the carburized samples. Lowest threshold achieved for field emission was 23.5 V/μm. © 2007 IOP Publishing Ltd.6117174Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Sol. State Electron., 45 (6), p. 893Journet, C., Bernier, P., (1998) Appl. Phys., 67 (1), p. 1Morell, G., Gonzlez-Berríos, A., Weiner, B.R., Gupta, S., (2006) J. Mater. Sci: Mater. Electron, 17 (6), p. 443Koeck, F.A.M., Zumer, M., Nemanic, V., Nemanich, R.J., (2006) Diam. Rel. Mater., 15 (4-8), p. 880Andreatta, A., Cao, Y., Chiang, J.C., Heger, A.J., (1988) Synth. Met., 26 (4), p. 383Konyushenko, E.N., Stejskal, J., Trchov, M., Hradil, J., Kovrov, J., Prokes, J., Cieslar, M., Sapurina, I., (2006) PolymerNastase, C., Nastase, F., Vaseashta, A., Stamatin, I., (2006) Prog. Sol. Sta. Chem., 34 (2-4), p. 181Mottaghittalab, V.B., Spinks, G.M., Wallace, G.G., (2006) Synth. Met.Nickels, P., Dittimer, W.U., Beyer, S., Kottahous, J.P., Simmel, F.C., (2004) Nanotech., 15 (11), p. 1524Zhang, M.Y., Kaner, R.B., (2004) J. Am. Chem. Soc., 126 (22), p. 7097Baibarac, M., Baltog, I., Lefrand, S., Mevellec, J.Y., Chauvet, O., (2003) Chem. Mater., 15 (21), p. 4149Quillard, S., Loaurn, G., Lefrant, S., MacDiamird, A.G., (1994) Phys. Rev., 50 (17), p. 12496Mammana, V.P., Santos, T.E.A., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81 (18), p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotech., 15 (10), p. 678Kurt Bonard, R.J.M., Karimi, A., (2001) Diam.Rel. Mater., 10 (11), p. 1962Gupta Weiner, S.B.R., Morell, G., (2002) Diam. Rel. Mater., 11 (3-6), p. 799Wu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., (2000) J. Appl. Phys., 88 (5), p. 2967Proffitt, S.S., Probert, S.J., Whitfield, M.D., Foord, J.S., Jackman, R.B., (1999) Diam. Rel. Mater., 8 (2-5), p. 76

    Field-emission Properties Of Sulphur Doped Nanocrystalline Diamonds

    Get PDF
    Nanostructured diamond doped with sulphur has been prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, carbon disulfide, hydrogen, and argon mixture. The reduction of diamond grains to the nanoscale is relevant to create a network of defective grain boundaries which may be n-type doped to facilitate the transport and injection of electrons to the diamond grains located at the vacuum interface, enhancing the electron field-emission properties of the samples. The downsizing was produced by secondary nucleation and defects induced by sulphur and argon atoms in the chemical vapour deposition surface reactions. Sulphur also acts as an n-type dopant of diamond. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains and the morphology, revealed by field electron scanning microscopy, shows that the grains are in the range of 10 to 30 nm. The lowest threshold achieved for field emission was 13.20 V/μm. © 2007 IOP Publishing Ltd.6116670Yang, A.T.S., Lay, J.Y., Wong, M.S., Cheng, C.L., (2002) J. Appl. Phys., 92 (4), p. 2133Mammana, V.P., Tea, S., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81 (18), p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotech., 15 (10), p. 678Gruen, D.M., (1998) MRS Bull., 9, p. 32Jin, B.M., Kim, C.C., (1997) Appl. Phys. A: Solid Surf., 65 (1), p. 53Himpsel, F.J., Knapp, J.A., Vanvechten, J.A., Eastman, P.E., (1979) Phys. Rev., 20 (2), p. 624Bandis, B., Pate, B.B., (1996) Appl. Phys Lett., 69 (3), p. 366Okano, K., Yamada, T., Suave, A., Koizumi, S., Pate, B.B., (1999) Appl. Surf. Sci., 146 (1-4), p. 274Kurt Bonard, R.J.M., Karimi, A., (2001) Diam. Rel. Mater., 10 (11), p. 1962Bonnot, A.M., Deldem, M., Beaugnon, M., Fournier T.schouler, M.C., Mermoux, M., (1999) Diam. Rel. Mater., 8 (2-5), p. 631Gruen, D.M., Liu, S., Krauss, A.R., Liuy, A., Luo, J., Foster, C.M., (1994) J. Vac. Sci. Technol., 12 (4), p. 1491Gupta Weiner, S.B.R., Morell, G., (2002) Diam. Rel. Mater., 11 (3-6), p. 799Gupta Weiner, S.B.R., Morell, G., (2005) J. Appl. Phys., 97, p. 094307Morell, G., Gonzlez-Berríos, A., Weiner, B.R., Gupta, S., (2006) J. Mater. Sci: Mater. Electron, 17 (6), p. 443Koeck, F.A.M., Zumer, M., Nemanic, V., Nemanich, R.J., (2006) Diam. Rel. Mater., 15 (4-8), p. 880Shroder Nemanich, R.E.R.J., Glass, J.T., (1990) Phys. Rev., 41 (6), p. 3738Birrell, J., Gerbi, J.E., Auciello, O., Gibson, J.M., Johnson, J., Carlisle, J.A., (2005) Diam. Rel. Mater., 14 (1), p. 86Ferrari, A.C., Robertson, J., (2001) Phys. Rev., 63, pp. 121405RWu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., (2000) J. Appl. Phys., 88 (5), p. 2967Proffitt, S.S., Probert, S.J., Whitfield, M.D., Foord, J.S., Jackman, R.B., (1999) Diam. Rel. Mater., 8 (2-5), p. 76

    Characterization Of Boron Doped Nanocrystalline Diamonds

    Get PDF
    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range. © 2008 IOP Publishing Ltd.100PART 5Himpsel, F.J., Knapp, J.A., VanVechten, J.A., Eastman, P.E., (1979) Phys. Rev., 20 B, p. 624Bandis, B., Pate, B.B., (1996) Appl. Phys Lett., 69, p. 366Mammana, V.P., Santos, T.E.A., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81, p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotech., 15 (10), pp. S678Shroder, R.E., Nemanich, R.J., Glass, J.T., (1990) Phys. Rev., 41 B, p. 3738Ferrari, A.C., Robertson, J., (2001) Phys. Rev., 63 B. , 121405(R)Jiang, X., Frederick, C.K.Au., Lee, S.T., (2002) J. Appl. Phys., 92 (5), p. 2880Lee, Y.C., Lin, S.J., Lin, I.N., Cheng, H.F., (2005) J. Appl. Phys., 97, p. 05431

    Synthesis And Characterization Of Boron-doped Carbon Nanotubes

    Get PDF
    Boron-doped carbon nanotubes have been prepared by chemical vapour deposition of ethyl alcohol doped with B2O3 using a hot-filament system. Multi-wall carbon nanotubes of diameters in the range of 30 - 100 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicated that the degree of C-C sp2 order decreased with boron doping. Lowest threshold fields achieved were 1.0 V/μm and 2.1 V/μm for undoped and boron-doped samples, respectively. © 2008 IOP Publishing Ltd.100PART 5Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Sol. State Electron., 45, p. 893Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Rego, C.A., (2002) Appl.Phys.Lett., 81, p. 2647Mondal, K.C., Coville, N.J., Witcomb, M.J., Tejral, G., Havel, J., (2007) Chem. Phys. Lett., , in pressChen, C.F.C., Tsai, C.L., Lin, C.L., (2003) Diam. Rel. Mater., 12, p. 1500Sharma, R.B., Late Joag, D.S., Govindaraj Rao, C.N.R., (2006) Chem.Phys.Lett, 428, p. 102Mennella, V., Monaco, G., Colanoeli, L., Bussoletti, E., (1995) Carbon, 33 (2), p. 11

    Growth And Characterization Of Carbon Nanofibers By A Technique Of Polymer Doped Catalyst And Hot-filament Chemical Vapor Deposition

    No full text
    Carbon nanostructures have been prepared from the catalytic conversion of polyethylene glycol using a rapid immersion in hot-filament system fed with ethanol, hydrogen and argon. Fiber structures of external diameter about 30 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicate high degree of C-C sp2 ordering which suggests that the samples correspond to CNTs of good tube crystallinity. The samples presented remarkable field emission properties. Lowest threshold field achieved for electron emission was 1.0 V/μm. © 2008 Elsevier Ltd. All rights reserved.832273275Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Solid-State Electron, 45, p. 893Journet, C., Bernier, P., (1998) Appl Phys A, 67, p. 1Morell, G., González-Berríos, A., Weiner, B.R., Gupta, S., (2006) J Mater Sci Mater Electron, 17, p. 443Koeck, F.A.M., Zumer, M., Nemanic, V., Nemanich, R.J., (2006) Diamond Relat Mater, 15, p. 880Andreatta, A., Cao, Y., Chiang, J.C., Heger, A.J., (1988) Synth Met, 26, p. 383Nickels, P., Dittimer, W.U., Beyer, S., Kottahous, J.P., Simmel, F.C., (2004) Nanotechnology, 15, p. 1524Zhang, M.Y., Kaner, R.B., (2004) J Am Chem Soc, 126, p. 7097Hiura, H., Ebbensen, T.W., Tanigaki, K., Takahashi, H., (1993) Chem Phys Lett, 202, p. 509Morjan, R.E., Nerushev, O.A., Sveningsson, M., Rohmund, F., Falk, L.K.L., Campbell, E.E.B., (2004) Appl Phys A, 78, p. 253Mammana, V.P., Monteiro, O.R., Fonseca, L.R.C., (2004) J Vac Sci Technol B, 22, p. 715Dimitrijevic, S., Whiters, J.C., Mammana, V.P., Monteiro, O.R., Ager, J.W., Brown, I.G., (1999) Appl Phys Lett, 75, p. 2680Mammana, V.P., Degasperi, F.T., Monteiro, O.R., Vuolo, J.H., Salvadori, M.C., Brown, I.G., (2000) J Vac Sci Technol A, 18, p. 1818Mammana, V.P., Anders, S., Monteiro, O.R., Salvadori, M.C., (2000) J Vac Sci Technol B, 18, p. 2415Mammana, V.P., Santos, T.E.A., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl Phys Lett, 81, p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotechnology, 15 (10), pp. S678Kurt, R., Bonard, J.M., Karimi, A., (2001) Diamond Relat Mater, 10, p. 1962Gupta, S., Weiner, B.R., Morell, G., (2002) Diamond Relat Mater, 11, p. 799Wu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., (2000) J Appl Phys, 88, p. 2967Proffitt, S.S., Probert, S.J., Whitfield, M.D., Foord, J.S., Jackman, R.B., (1999) Diamond Relat Mater, 8, p. 76
    corecore