11 research outputs found
Changes in arginase isoforms in a murine model of neonatal brain hypoxia-ischemia.
BackgroundArginases (ARG isoforms, ARG-1/ARG-2) are key regulatory enzymes of inflammation and tissue repair; however, their role after neonatal brain hypoxia (H) and hypoxia-ischemia (HI) remains unknown.MethodsC57BL/6 mice subjected to the Vannucci procedure on postnatal day (P9) were sacrificed at different timepoints. The degree of brain damage was assessed histologically. ARG spatiotemporal localization was determined via immunohistochemistry. ARG expression was measured by Western blot and activity spectrophotometrically.ResultsARG isoform expression increased during neurodevelopment (P9-P17) in the cortex and hippocampus. This was suppressed with H and HI only in the hippocampus. In the cortex, both isoforms increased with H alone and only ARG-2 increased with HI at 3 days. ARG activity during neurodevelopment remained unchanged, but increased at 1 day with H and not HI. ARG-1 localized with microglia at the injury site as early as 4 h after injury, while ARG-2 localized with neurons.ConclusionsARG isoform expression increases with age from P9 to P17, but is suppressed by injury specifically in the hippocampus and not in the cortex. Both levels and activity of ARG isoforms increase with H, while ARG-1 immunolabelling is upregulated in the HI cortex. Evidently, ARG isoforms in the brain differ in spatiotemporal localization, expression, and activity during neurodevelopment and after injury.ImpactArginase isoforms change during neurodevelopment and after neonatal brain HI. This is the first study investigating the key enzymes of inflammation and tissue repair called arginases following murine neonatal brain HI. The highly region- and cell-specific expression suggests the possibility of specific functions of arginases. ARG-1 in microglia at the injury site may regulate neuroinflammation, while ARG-2 in neurons of developmental structures may impact neurodevelopment. While further studies are needed to describe the exact role of ARGs after neonatal brain HI, our study adds valuable data on anatomical localization and expression of ARGs in brain during development and after stroke
Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: involvement of BDNF?
International audienceStroke is a leading cause of death and disability in industrialized countries. Although surviving patients exhibit a certain degree of restoration of function attributable to brain plasticity, the majority of stroke survivors has to struggle with persisting deficits. In order to potentiate post-stroke recovery, several rehabilitation therapies have been undertaken and many experimental studies have reported that brain-derived neurotrophic factor (BDNF) is central to many facets of neuroplastic processes. However, although BDNF role in brain plasticity is well characterized through strategies that manipulate its content, the involvement of this neurotrophin in spontaneous post-stroke recovery remains to be clarified. Besides, while the neuroplastic role of BDNF is restricted to its mature form, most studies investigating the proper effect of ischemia on post-stroke BDNF metabolism focused on mRNA or total protein expressions. In addition, these studies are mainly performed in brain regions collected either at or around the lesion site. Therefore, the objective of the present study was to investigate in both hemispheres, the long-term expression (up to one month) of both pro- and mature BDNF forms in rats subjected to photothrombotic ischemia. These assessments were performed in the cortex and in the hippocampus, two regions known to subserve functional recovery after stroke and were coupled to the study of synaptophysin expression, a marker of synaptogenesis. Our study reports that stroke induces an early and transient increase (4h) in mature BDNF expression in the cortex of both hemispheres that was associated with a delayed rise (30d) in synaptophysin levels ipsilateraly. In both hippocampal territories, the pattern of mature BDNF expression shows a more delayed increase (from 8 to 30d), which coincides with the evolution of synaptophysin expression. Interestingly, in these hippocampal territories, pro-BDNF levels evolve differently suggesting a differential gene regulation between the two hemispheres. While highlighting the complexity of changes in BDNF metabolism after stroke, our data suggest that BDNF involvement in spontaneous post-stroke plasticity is region-dependent