1,479 research outputs found

    The Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard Model

    Full text link
    We compute the upper bound on the mass of the lightest Higgs boson in the Minimal Supersymmetric Standard Model in a model-independent way, including leading (one-loop) and next-to-leading order (two-loop) radiative corrections. We find that (contrary to some recent claims) the two-loop corrections are negative with respect to the one-loop result and relatively small (\simlt 3\%). After defining physical (pole) top quark mass MtM_t, by including QCD self-energies, and physical Higgs mass MHM_H, by including the electroweak self-energies Π(MH2)Π(0)\Pi\left(M_H^2\right)-\Pi(0), we obtain the upper limit on MHM_H as a function of supersymmetric parameters. We include as supersymmetric parameters the scale of supersymmetry breaking MSM_S, the value of tanβ\tan \beta and the mixing between stops Xt=At+μcotβX_t= A_t + \mu \cot\beta (which is responsible for the threshold correction on the Higgs quartic coupling). Our results do not depend on further details of the supersymmetric model. In particular, for MS1M_S\leq 1 TeV, maximal threshold effect Xt2=6MS2X_t^2=6M_S^2 and any value of tanβ\tan\beta, we find MH140M_H\leq 140 GeV for Mt190M_t\leq 190 GeV. In the particular scenario where the top is in its infrared fixed point we find MH86M_H\leq 86 GeV for Mt=170M_t = 170 GeV.Comment: 24 pages + 15 figures in one compressed uuencoded tarred postscript file (The figures can be obtained by e-mail from [email protected]; also, the whole postscript file of the text including the figures can be obtained by ANONYMOUS FTP from ROCA.CSIC.ES (161.111.20.20) at the directory HEP the file being HIGGS.PS: just type GET HEP/HIGGS.PS), Latex, CERN-TH.7334/9

    Some Cosmological Implications of Hidden Sectors

    Get PDF
    We discuss some cosmological implications of extensions of the Standard Model with hidden sector scalars coupled to the Higgs boson. We put special emphasis on the conformal case, in which the electroweak symmetry is broken radiatively with a Higgs mass above the experimental limit. Our refined analysis of the electroweak phase transition in this kind of models strengthens the prediction of a strongly first-order phase transition as required by electroweak baryogenesis. We further study gravitational wave production and the possibility of low-scale inflation as well as a viable dark matter candidate.Comment: 23 pages, 8 figures; some comments added, published versio

    Inversion of the anomeric configuration of the transferred sugar during inactivation of the macrolide antibiotic oleandomycin catalyzed by a macrolide glycosyltransferase

    Get PDF
    AbstractMacrolides are a group of antibiotics structurally characterized by a macrocyclic lactone to which one or several deoxy-sugar moieties are attached. The sugar moieties are transferred to the different aglycones by glycosyltransferases (GTF). The OleI GTF of an oleandomycin producer, Streptomyces antibioticus, catalyzes the inactivation of this macrolide by glycosylation. The product of this reaction was isolated and its structure elucidated. The donor substrate of the reaction was UDP-α-D-glucose, but the reaction product showed a β-glycosidic linkage. The inversion of the anomeric configuration of the transferred sugar and other data about the kinetics of the reaction and primary structure analysis of several GTFs are compatible with a reaction mechanism involving a single nucleophilic substitution at the sugar anomeric carbon in the catalytic center of the enzyme

    Supersymmetry and Electroweak Breaking in the Interval

    Full text link
    Hypermultiplets are considered in the five-dimensional interval where all fields are continuous and the boundary conditions are dynamically obtained from the action principle. The orbifold boundary conditions are obtained as particular cases. We can interpret the Scherk-Schwarz supersymmetry breaking as a misalignment of boundary conditions while a new source of supersymmetry breaking corresponding to a mismatch of different boundary parameters is identified. The latter can be viewed as coming from boundary supersymmetry breaking masses for hyperscalars and the nature of the corresponding supersymmetry breaking parameter is analyzed. For some regions of the parameter space where supersymmetry is broken (either by Scherk-Schwarz boundary conditions or by boundary hyperscalar masses) electroweak symmetry breaking can be triggered at the tree level.Comment: 28 pages, 5 figure

    The MSSM from Scherk-Schwarz Supersymmetry Breaking

    Get PDF
    We present a five-dimensional model compactified on an interval where supersymmetry is broken by the Scherk-Schwarz mechanism. The gauge sector propagates in the bulk, two Higgs hypermultiplets are quasilocalized, and quark and lepton multiplets localized, in one of the boundaries. The effective four-dimensional theory is the MSSM with very heavy gauginos, heavy squarks and light sleptons and Higgsinos. The soft tree-level squared masses of the Higgs sector can be negative and they can (partially) cancel the positive one-loop contributions from the gauge sector. Electroweak symmetry breaking can then comfortably be triggered by two-loop radiative corrections from the top-stop sector. The fine tuning required to obtain the electroweak scale is found to be much smaller than in the MSSM, with essentially no fine-tuning for few TeV gaugino masses. All bounds from direct Higgs searches at LEP and from electroweak precision observables can be satisfied. The lightest supersymmetric particle is a (Higgsino-like) neutralino that can accomodate the abundance of Dark Matter consistently with recent WMAP observations.Comment: 23 pages, 3 figure

    Non-line-of-sight transient rendering

    Get PDF
    The capture and analysis of light in flight, or light in transient state, has enabled applications such as range imaging, reflectance estimation and especially non-line-of-sight (NLOS) imaging. For this last case, hidden geometry can be reconstructed using time-resolved measurements of indirect diffuse light emitted by a laser. Transient rendering is a key tool for developing such new applications, significantly more challenging than its steady-state counterpart. In this work, we introduce a set of simple yet effective subpath sampling techniques targeting transient light transport simulation in occluded scenes. We analyze the usual capture setups of NLOS scenes, where both the camera and light sources are focused on particular points in the scene. Also, the hidden geometry can be difficult to sample using conventional techniques. We leverage that configuration to reduce the integration path space. We implement our techniques in a modified version of Mitsuba 2 adapted for transient light transport, allowing us to support parallelization, polarization, and differentiable rendering. © 2022 The Author(s

    Thermally-induced vacuum instability in a single plane wave

    Full text link
    Ever since Schwinger published his influential paper [J. Schwinger, Phys. Rev. \textbf{82}, 664 (1951)], it has been unanimously accepted that the vacuum is stable in the presence of an electromagnetic plane wave. However, we advance an analysis that indicates this statement is not rigorously valid in a real situation, where thermal effects are present. We show that the thermal vacuum, in the presence of a single plane-wave field, even in the limit of zero frequency (a constant crossed field), decays into electron-positron pairs. Interestingly, the pair-production rate is found to depend nonperturbatively on both the amplitude of the constant crossed field and on the temperature.Comment: 5 pages, 3 figure

    Finite Higgs mass without Supersymmetry

    Get PDF
    We identify a class of chiral models where the one-loop effective potential for Higgs scalar fields is finite without any requirement of supersymmetry. It corresponds to the case where the Higgs fields are identified with the components of a gauge field along compactified extra dimensions. We present a six dimensional model with gauge group U(3)xU(3) and quarks and leptons accomodated in fundamental and bi-fundamental representations. The model can be embedded in a D-brane configuration of type I string theory and, upon compactification on a T^2/Z_2 orbifold, it gives rise to the standard model with two Higgs doublets.Comment: 28 pages, 4 figures, uses axodraw. Some typos corrected and references rearrange
    corecore