782 research outputs found

    Range descriptions for the spherical mean Radon transform

    Get PDF
    The transform considered in the paper averages a function supported in a ball in \RR^n over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, error correction, and other issues. Four different types of complete range descriptions are provided, some of which also suggest inversion procedures. Necessity of three of these (appropriately formulated) conditions holds also in general domains, while the complete discussion of the case of general domains would require another publication.Comment: LATEX file, 55 pages, two EPS figure

    Thrust-reverser flow investigation on a twin-engine transport

    Get PDF
    An investigation was conducted in the NASA Langley 14 x 22 foot Subsonic Tunnel to study the effects of engine thrust reversing on an aft-mounted twin-engine transport and to develop effective testing techniques. Testing was done over a fixed and a moving-belt ground plane and over a pressure instrumented ground board. Free-stream dynamic pressure was set at values up to 12.2 psf, which corresponded to a maximum Reynolds number based on the mean aerodynamic chord of 765,000. The thrust reversers examined included cascade, target and four-door configurations. The investigation focused on the range of free-stream velocities and engine thrust-reverser flow rates that would be typical for landing ground-roll conditions. Flow visualization techniques were investigated, and the use of water or smoke injected into the reverser flow proved effective to determine the forward progression of the reversed flow and reingestion limits. When testing over a moving-belt ground plane, as opposed to a fixed ground plane, forward penetration of the reversed flow was reduced. The use of a pressure-instrumented ground board enabled reversed flow ground velocities to be obtained, and it provided a means by which to identify the reversed flow impingement point on the ground

    Thrust-induced effects on subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration

    Get PDF
    An investigation was conducted in the Langley 4 by 7 Meter Tunnel of the thrust induced effects on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing fighter aircraft. The investigation was conducted at Mach numbers from 0.14 to 0.17 over an angle-of-attack range from -2 deg to 26 deg. The major model variables were the spanwise blowing nozzle sweep angle and main nozzle vector angle along with trailing edge, flap deflections. The overall thrust coefficient (main and spanwise nozzles) was varied from 0 (jet off) to 2.0. The results indicate that the thrust-induced effects from the main nozzle alone were small and mainly due to boundary-layer control affecting a small area behind the nozzle. When the spanwise blowing nozzles were included, the induced effects were larger than the main nozzle alone and were due to both boundary layer control and induced circulation lift. No leading edge vortex effects were evident

    Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration

    Get PDF
    The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2

    Evaluation of Four Advanced Nozzle Concepts for Short Takeoff and Landing Performance

    Get PDF
    Four advanced nozzle concepts were tested on a canard-wing fighter in the Langley 14- by 22-Foot Subsonic Tunnel. The four vectoring-nozzle concepts were as follows: (1) an axisymmetric nozzle (AXI); (2) an asymmetric, load balanced exhaust nozzle (ALBEN); (3) a low aspect ratio, single expansion ramp nozzle (LASERN); and (4) a high aspect ratio, single expansion ramp nozzle (HASERN). The investigation was conducted to determine the most suitable nozzle concept for short takeoff and landing (STOL) performance. The criterion for the best STOL performance was a takeoff ground roll of less than 1000 ft. At approach, the criteria were high lift and sufficient drag to maintain a glide slope of -3 to -6 deg with enough pitching-moment control from the canards. The test was performed at a dynamic pressure of 45 lb/sq ft and an angle-of-attack range of 0 to 20 deg. The nozzle pressure ratio was varied from 1.0 to 4.3 at both dry power and after burning nozzle configurations with nozzle vectoring to 60 deg. In addition, the model was tested in and out of ground effects. The ALBEN concept was the best of the four nozzle concepts tested for STOL performance

    Thrust-induced effects on low-speed aerodynamics of fighter aircraft

    Get PDF
    Results of NASA Langley has conducted wind-tunnel investigations of several fighter configurations conducted to determine the effects of both thrust vectoring and spanwise blowing are reviewed. A recent joint NASA/Grumman Aerospace Corporation/U.S. Air Force Wright Aeronautical Laboratory wind-tunnel investigation was conducted to examine the effects of spanwise blowing on the trailing-edge flap system. This application contrasts with the more familiar method of spanwise blowing near the wing leading edge. Another joint program among NASA/McDonnell Aircraft Company/U.S. Air Force Wright Aeronautical Laboratory investigated the effects of reverse thrust on the low-speed aerodynamics of an F-15 configuration. The F-15 model was fitted with a rotating van thrust reverser concept which could simulate both in-flight reversing for approach and landing or full reversing for ground roll reduction. The significant results of these two joint programs are reported
    corecore