364 research outputs found

    Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells

    Get PDF
    Chronic myeloid leukaemia (CML) is maintained by a rare population of tyrosine kinase inhibitor (TKI)-insensitive malignant stem cells. Our long-term aim is to find a BcrAbl-independent drug that can be combined with a TKI to improve overall disease response in chronic-phase CML. Omacetaxine mepesuccinate, a first in class cetaxine, has been evaluated by clinical trials in TKI-insensitive/resistant CML. Omacetaxine inhibits synthesis of anti-apoptotic proteins of the Bcl-2 family, including (myeloid cell leukaemia) Mcl-1, leading to cell death. Omacetaxine effectively induced apoptosis in primary CML stem cells (CD34<sup>+</sup>38<sup>lo</sup>) by downregulation of Mcl-1 protein. In contrast to our previous findings with TKIs, omacetaxine did not accumulate undivided cells <i>in vitro</i>. Furthermore, the functionality of surviving stem cells following omacetaxine exposure was significantly reduced in a dose-dependant manner, as determined by colony forming cell and the more stringent long-term culture initiating cell colony assays. This stem cell-directed activity was not limited to CML stem cells as both normal and non-CML CD34<sup>+</sup> cells were sensitive to inhibition. Thus, although omacetaxine is not leukaemia stem cell specific, its ability to induce apoptosis of leukaemic stem cells distinguishes it from TKIs and creates the potential for a curative strategy for persistent disease

    Management of imatinib-resistant CML patients

    Get PDF
    Imatinib has had marked impact on outcomes in chronic myelogenous leukemia (CML) patients for all stages of the disease and is endorsed by international treatment guidelines as the first line option. Although imatinib is highly effective and well tolerated, the development of resistance represents a clinical challenge. Since the most frequently identified mechanism of acquired imatinib resistance is bcr-abl kinase domain point mutations, periodic hematologic, cytogenetic, and molecular monitoring is critical throughout imatinib therapy. Once cytogenetic remission is achieved, residual disease can be monitored by bcr-abl transcript levels as assayed by reverse transcription polymerase chain reaction (RT-PCR). Detection of bcr-abl mutants prior to and during imatinib therapy can aid in risk stratification as well as in determining therapeutic strategies. Thus, mutation screening is indicated in patients lacking or losing hematologic response. Moreover, search for mutations should also be performed when a 3-log reduction of bcr-abl transcripts is not achieved or there is a reproducible increase of transcript levels. In patients harboring mutations which confer imatinib resistance, novel second line tyrosine kinase inhibitors have demonstrated encouraging efficacy with low toxicity. Only the T315I bcr-abl mutant has proved totally resistant to all clinically available bcr-abl inhibitors. Strategies to further increase the rates of complete molecular remissions represent the next frontier in the targeted therapy of CML patients

    Dasatinib preferentially induces apoptosis by inhibiting Lyn kinase in nilotinib-resistant chronic myeloid leukemia cell line

    Get PDF
    Nilotinib is approved for treatment of newly diagnosed chronic myeloid leukemia (CML) and it is shown superiority over imatinib in first-line treatment for patients of CML. In this study, we established a nilotinib-resistant cell line, K562NR, and evaluated the resistance to nilotinib and efficacy of dasatinib. We found activation of Lyn plays a dominant role in survival of the nilotinib-resistant cell line. We found dasatinib induces the apoptosis of nilotinib-resistant cells and inhibits Lyn kinase activity. This novel nilotinib-resistant CML cell line may help to explore novel therapy for CML

    New dosing schedules of dasatinib for CML and adverse event management

    Get PDF
    Resistance to imatinib in patients with chronic myelogenous leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) has emerged as a significant clinical issue. Dasatinib is a tyrosine kinase inhibitor that has 325-fold greater in vitro activity against native BCR-ABL (breakpoint cluster region-Abelson leukemia virus) compared with imatinib and can overcome primary (intrinsic) and secondary (acquired) imatinib resistance. Here, we review the clinical profile of dasatinib in imatinib-resistant and -intolerant patients and share clinical approaches for managing adverse events (AEs) to ensure maximum patient benefit. References were obtained through literature searches on PubMed as well as from the Proceedings of Annual Meetings of the American Society of Clinical Oncology, the American Society of Hematology, and European Hematology Association. Phase II and III studies of dasatinib in patients with imatinib-resistant or -intolerant CML in any phase or Ph+ ALL were selected for discussion. Dasatinib is currently indicated for the treatment of patients with imatinib-resistant or -intolerant CML or Ph+ ALL. AEs associated with dasatinib are typically mild to moderate, and are usually resolved with temporary treatment interruption and/or dose adjustments. A Phase III dose optimization study showed that in patients with chronic phase (CP) CML, 100 mg once-daily dasatinib improves the safety profile, particularly pleural effusion and thrombocytopenia, while maintaining efficacy compared with the previously recommended dose of 70 mg twice-daily. Dasatinib has a manageable safety profile. For patients with CP CML, a new recommended starting dose of 100 mg once daily has recently been approved. The recommended dose for patients with advanced CML or Ph+ ALL remains 70 mg twice daily

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL

    Src-family kinases in the development and therapy of Philadelphia chromosome-positive chronic myeloid leukemia and acute lymphoblastic leukemia

    Get PDF
    The BCR-ABL kinase inhibitor imatinib has shown significant efficacy in chronic myeloid leukemia (CML) and is the standard front-line therapy for patients in chronic phase. However, a substantial number of patients are either primarily refractory or acquire resistance to imatinib. While a number of mechanisms are known to confer resistance to imatinib, increasing evidence has demonstrated a role for BCR-ABL–independent pathways. The Src-family kinases (SFKs) are one such pathway and have been implicated in imatinib resistance. Additionally, these kinases are key to the progression of CML and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). The dual SFK/BCR-ABL inhibitor dasatinib is now clinically available and has markedly greater potency compared with imatinib against native BCR-ABL and the majority of imatinib resistant BCR-ABL mutants. Therefore, this agent, as well as other dual SFK/BCR-ABL inhibitors under development, could provide added therapeutic advantages by overcoming both BCR-ABL– dependent (i.e., BCR-ABL mutations) and – independent forms of imatinib resistance and delaying transition to advanced phase disease. In this review, we discuss the preclinical and clinical evidence demonstrating the involvement of SFKs in imatinib resistance and the progression of CML and Ph+ ALL, as well as the potential role of dual SFK/BCR-ABL inhibition in the management of these diseases

    The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib

    Get PDF
    Tyrosine kinase inhibitors (TKIs) like dasatinib and nilotinib are indicated as second-line treatment for chronic myeloid leukemia resistant or intolerant to the current first-line TKI imatinib. These are agents are well tolerated, but potent and as such should be monitored for potentially serious side-effects like fluid retention and pleural effusions. Here we present key clinical trial data and safety considerations for all FDA approved TKIs in context for effective management of fluid retention and pleural effusions. Altering the dasatinib regimen from 70 mg twice daily to 100 mg daily reduces the risk of pleural effusion for patients taking dasatinib. Should pleural effusion develop, dasatinib should be interrupted until the condition resolves. Patients with a history of pleural effusion risk factors should be monitored closely while taking dasatinib. Patients receiving imatinib and nilotinib are not without risk of fluid retention. All patients should also be educated to recognize and report key symptoms of fluid retention or pleural effusion. Pleural effusions are generally managed by dose interruption/reduction and other supportive measures in patients with chronic myeloid leukemia receiving dasatinib therapy

    Crystal Structures of ABL-Related Gene (ABL2) in Complex with Imatinib, Tozasertib (VX-680), and a Type I Inhibitor of the Triazole Carbothioamide Class†

    Get PDF
    ABL2 (also known as ARG (ABL related gene)) is closely related to the well-studied Abelson kinase cABL. ABL2 is involved in human neoplastic diseases and is deregulated in solid tumors. Oncogenic gene translocations occur in acute leukemia. So far no structural information for ABL2 has been reported. To elucidate structural determinants for inhibitor interaction, we determined the cocrystal structure of ABL2 with the oncology drug imatinib. Interestingly, imatinib not only interacted with the ATP binding site of the inactive kinase but was also bound to the regulatory myristate binding site. This structure may therefore serve as a tool for the development of allosteric ABL inhibitors. In addition, we determined the structures of ABL2 in complex with VX-680 and with an ATP-mimetic type I inhibitor, which revealed an interesting position of the DFG motif intermediate between active and inactive conformations, that may also serve as a template for future inhibitor design

    Combination of Two but Not Three Current Targeted Drugs Can Improve Therapy of Chronic Myeloid Leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is a cancer of the hematopoietic system and has been treated with the drug Imatinib relatively successfully. Drug resistance, acquired by mutations, is an obstacle to success. Two additional drugs are now considered and could be combined with Imatinib to prevent resistance, Dasatinib and Nilotinib. While most mutations conferring resistance to one drug do not confer resistance to the other drugs, there is one mutation (T315I) that induces resistance against all three drugs. Using computational methods, the combination of two drugs is found to increase the probability of treatment success despite this cross-resistance. Combining more than two drugs, however, does not provide further advantages. We also explore possible combination therapies using drugs currently under development. We conclude that among the targeted drugs currently available for the treamtent of CML, only the two most effective ones should be used in combination for the prevention of drug resistance
    corecore