6 research outputs found

    As(V) sorption/desorption on different waste materials and soil samples

    Get PDF
    Aiming to investigate the efficacy of different materials as bio-sorbents for the purification of As-polluted waters, batch-type experiments were employed to study As(V) sorption and desorption on oak ash, pine bark, hemp waste, mussel shell, pyritic material, and soil samples, as a function of the As(V) concentration added. Pyritic material and oak ash showed high sorption (90% and >87%) and low desorption (<2% and <7%). Alternatively, hemp waste showed low retention (16% sorption and 100% desorption of the amount previously sorbed), fine shell and pine bark sorbed <3% and desorbed 100%, the vineyard soil sample sorbed 8% and released 85%, and the forest soil sample sorbed 32% and desorbed 38%. Sorption data fitted well to the Langmuir and Freundlich models in the case of both soil samples and the pyritic material, but only to the Freundlich equation in the case of the various by-products. These results indicate that the pyritic material and oak ash can be considered efficient As(V) sorbents (thus, useful in remediation of contaminated sites and removal of that pollutant), even when As(V) concentrations up to 6 mmol L-1 are added, while the other materials that were tested cannot retain or remove As(V) from polluted media.Ministerio de EconomĂ­a y Competitividad | Ref. CGL2012-36805-C02-01Ministerio de EconomĂ­a y Competitividad | Ref. CGL2012-36805-C02-0

    Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products

    Get PDF
    Chromium (as Cr(VI)) and fluoride (F−) are frequently found in effluents from different industrial activities. In cases where these effluents reach soil, it can play an important role in retaining those pollutants. Similarly, different byproducts could act as bio-adsorbents to directly treat polluted waters or to enhance the purging potential of soil. In this work, we used batch-type experiments to study competitive Cr(VI) and F− adsorption in two different soils and several kinds of byproducts. Both soils, as well as mussel shell, oak ash, and hemp waste showed higher adsorption for F−, while pyritic material, pine bark, and sawdust had a higher affinity for Cr(VI). Considering the binary competitive system, a clear competition between both elements in anionic form is shown, with decreases in adsorption of up to 90% for Cr(VI), and of up to 30% for F−. Adsorption results showed better fitting to Freundlich’s than to Langmuir’s model. None of the individual soils or byproducts were able to adsorbing high percentages of both pollutants simultaneously, but it could be highly improved by adding pine bark to increase Cr(VI) adsorption in soils, thus drastically reducing the risks of pollution and deleterious effects on the environment and on public healthThis research was funded by the SPANISH MINISTRY OF ECONOMY AND COMPETITIVENESS by means of the research projects CGL2012-36805-C02-01 and CGL2012-36805-C02-02. It was also partially financed by the European Regional Development Fund (FEDER in Spain)S

    Chromium VI and fluoride competitive adsorption on different soils and by-products

    Get PDF
    Chromium (as Cr(VI)) and fluoride (F−) are frequently found in effluents from different industrial activities. In cases where these effluents reach soil, it can play an important role in retaining those pollutants. Similarly, different byproducts could act as bio-adsorbents to directly treat polluted waters or to enhance the purging potential of soil. In this work, we used batch-type experiments to study competitive Cr(VI) and F− adsorption in two different soils and several kinds of byproducts. Both soils, as well as mussel shell, oak ash, and hemp waste showed higher adsorption for F−, while pyritic material, pine bark, and sawdust had a higher affinity for Cr(VI). Considering the binary competitive system, a clear competition between both elements in anionic form is shown, with decreases in adsorption of up to 90% for Cr(VI), and of up to 30% for F−. Adsorption results showed better fitting to Freundlich’s than to Langmuir’s model. None of the individual soils or byproducts were able to adsorbing high percentages of both pollutants simultaneously, but it could be highly improved by adding pine bark to increase Cr(VI) adsorption in soils, thus drastically reducing the risks of pollution and deleterious effects on the environment and on public health.Ministerio de EconomĂ­a y Competitividad (España) | Ref. CGL2012-36805-C02-01Ministerio de EconomĂ­a y Competitividad (España) | Ref. CGL2012-36805-C02-02European Commissio

    Effects of Changing pH, Incubation Time, and As(V) Competition, on F− Retention on Soils, Natural Adsorbents, By-Products, and Waste Materials

    Get PDF
    The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F−) sorption on forest and vineyard soil samples, pyritic, and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F− sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F− sorption even at alkaline pH, and pine sawdust showed low F− sorption for any pH value. Specifically, F− sorption was close to 100% for both ashes at pH &lt; 6, and around 70% at pH 10, while for forest soil it was close to 90% at pH &lt; 2, and around 60% at pH values near 8. Regarding the effect of incubation time on F− sorption, it was very low for both soils, pyritic material, granitic material, and both kinds of ashes, as all of them showed very rapid F− sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F− in 30 min, remaining constant up to 12 h, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 min, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F− sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F− sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F− removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F− and As(V) could take place

    As(V) Sorption/Desorption on Different Waste Materials and Soil Samples

    Get PDF
    Aiming to investigate the efficacy of different materials as bio-sorbents for the purification of As-polluted waters, batch-type experiments were employed to study As(V) sorption and desorption on oak ash, pine bark, hemp waste, mussel shell, pyritic material, and soil samples, as a function of the As(V) concentration added. Pyritic material and oak ash showed high sorption (90% and &gt;87%) and low desorption (&lt;2% and &lt;7%). Alternatively, hemp waste showed low retention (16% sorption and 100% desorption of the amount previously sorbed), fine shell and pine bark sorbed &lt;3% and desorbed 100%, the vineyard soil sample sorbed 8% and released 85%, and the forest soil sample sorbed 32% and desorbed 38%. Sorption data fitted well to the Langmuir and Freundlich models in the case of both soil samples and the pyritic material, but only to the Freundlich equation in the case of the various by-products. These results indicate that the pyritic material and oak ash can be considered efficient As(V) sorbents (thus, useful in remediation of contaminated sites and removal of that pollutant), even when As(V) concentrations up to 6 mmol L−1 are added, while the other materials that were tested cannot retain or remove As(V) from polluted media

    Table1.DOCX

    No full text
    <p>The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F<sup>−</sup>) sorption on forest and vineyard soil samples, pyritic, and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F<sup>−</sup> sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F<sup>−</sup> sorption even at alkaline pH, and pine sawdust showed low F<sup>−</sup> sorption for any pH value. Specifically, F<sup>−</sup> sorption was close to 100% for both ashes at pH < 6, and around 70% at pH 10, while for forest soil it was close to 90% at pH < 2, and around 60% at pH values near 8. Regarding the effect of incubation time on F<sup>−</sup> sorption, it was very low for both soils, pyritic material, granitic material, and both kinds of ashes, as all of them showed very rapid F<sup>−</sup> sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F<sup>−</sup> in 30 min, remaining constant up to 12 h, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 min, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F<sup>−</sup> sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F<sup>−</sup> sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F<sup>−</sup> removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F<sup>−</sup> and As(V) could take place.</p
    corecore