17,442 research outputs found
Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies
A transient thermal finite element model has been created of the pulsed thermography (PT) and pulse phase thermography (PPT) experimental procedure. The model has been experimentally validated through the application of four case studies of varying geometries and materials. Materials used include aluminium, carbon fibre reinforced plastic (CFRP) and adhesively bonded joints. The same four case studies have also formed a basis for comparison between three experimental techniques: PT, PPT and the more established ultrasonic (UT) c-scan.Results show PPT to be advantageous over PT due to its deeper probing as it is less influenced by surface features. Whilst UT is able to reveal all the defects in these case studies, the time consuming nature of the process is a significant disadvantage compared to the full field thermography methods.Overall, the model has achieved good correlation for the case studies considered and it was found that the main limiting factor of the PT model accuracy was knowledge of thermal material properties such as conductivity and specific heat. Where these properties were accurately known the model performed very well in comparison with experimental results. PPT modelling performed less well due to the method of processing the PT data which aims to emphasise small differences. Hence inaccuracies in inputted values such as material properties have a much greater influence on the modelled PPT data. The model enables a better understanding of PT and PPT and provides a means of establishing the experimental set-up parameters required for different components, allowing the experimental technique to be appropriately tailored to more complex situations including bonded joints or structures where several materials are present.The paper ends with a section on defect detectability based on thermal diffusivity contrast between the defect and the bulk material. It shows that in aluminium, because of its higher conductivity, greater thermal contrast is achieved for small differences in diffusivity. Regions where the diffusivity ratio between defect and bulk materials was insufficient to provide thermal contrast for defect identification were found. PPT phase data is shown to reduce the extent of such regions increasing the detectability of defects. Effusivity is introduced as a means of determining the thermal contrast between the defect and non-defective areas and hence establishing the defect detectability
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
We explore the impact of obliquity variations on planetary habitability in
hypothetical systems with high mutual inclination. We show that large
amplitude, high frequency obliquity oscillations on Earth-like exoplanets can
suppress the ice-albedo feedback, increasing the outer edge of the habitable
zone. We restrict our exploration to hypothetical systems consisting of a
solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We
verify that these systems are stable for years with N-body simulations,
and calculate the obliquity variations induced by the orbital evolution of the
Earth-mass planet and a torque from the host star. We run a simplified energy
balance model on the terrestrial planet to assess surface temperature and ice
coverage on the planet's surface, and we calculate differences in the outer
edge of the habitable zone for planets with rapid obliquity variations. For
each hypothetical system, we calculate the outer edge of habitability for two
conditions: 1) the full evolution of the planetary spin and orbit, and 2) the
eccentricity and obliquity fixed at their average values. We recover previous
results that higher values of fixed obliquity and eccentricity expand the
habitable zone, but also find that obliquity oscillations further expand
habitable orbits in all cases. Terrestrial planets near the outer edge of the
habitable zone may be more likely to support life in systems that induce rapid
obliquity oscillations as opposed to fixed-spin planets. Such planets may be
the easiest to directly characterize with space-borne telescopes.Comment: 46 pages, 12 Figures, 5 Table
Orbital Decay of Supermassive Black Hole Binaries in Clumpy Multiphase Merger Remnants
We simulate an equal-mass merger of two Milky Way-size galaxy discs with
moderate gas fractions at parsec-scale resolution including a new model for
radiative cooling and heating in a multi-phase medium, as well as star
formation and feedback from supernovae. The two discs initially have a
supermassive black hole (SMBH) embedded in
their centers. As the merger completes and the two galactic cores merge, the
SMBHs form a a pair with a separation of a few hundred pc that gradually
decays. Due to the stochastic nature of the system immediately following the
merger, the orbital plane of the binary is significantly perturbed.
Furthermore, owing to the strong starburst the gas from the central region is
completely evacuated, requiring ~Myr for a nuclear disc to rebuild.
Most importantly, the clumpy nature of the interstellar medium has a major
impact on the the dynamical evolution of the SMBH pair, which undergo
gravitational encounters with massive gas clouds and stochastic torquing by
both clouds and spiral modes in the disk. These effects combine to greatly
delay the decay of the two SMBHs to separations of a few parsecs by nearly two
orders of magnitude, yr, compared to previous work. In mergers of
more gas-rich, clumpier galaxies at high redshift stochastic torques will be
even more pronounced and potentially lead to stronger modulation of the orbital
decay. This suggests that SMBH pairs at separations of several tens of parsecs
should be relatively common at any redshift.Comment: submitted to MNRAS; Comments very welcom
Capacitive pressure transducer system
Closed loop capacitive pressure transducer with extended frequency response for very low pressure measurement
Asteroids Observed by The Sloan Digital Sky Survey
We announce the first public release of the SDSS Moving Object Catalog, with
SDSS observations for 58,117 asteroids. The catalog lists astrometric and
photometric data for moving objects observed prior to Dec 15, 2001, and also
includes orbital elements for 10,592 previously known objects. We analyze the
correlation between the orbital parameters and optical colors for the known
objects, and confirm that asteroid dynamical families, defined as clusters in
orbital parameter space, also strongly segregate in color space. Their
distinctive optical colors indicate that the variations in chemical composition
within a family are much smaller than the compositional differences between
families, and strongly support earlier suggestions that asteroids belonging to
a particular family have a common origin.Comment: 6 pages, 1 color figure, to be presented at "Astronomical Telescopes
& Instrumentation", SPIE 200
Single-Molecule Junction Conductance through Diaminoacenes
The study of electron transport through single molecules is essential to the
development of molecular electronics. Indeed, trends in electronic conductance
through organic nanowires have emerged with the increasing reliability of
electron transport measurements at the single-molecule level. Experimental and
theoretical work has shown that tunneling distance, HOMO-LUMO gap and molecular
conformation influence electron transport in both saturated and pi-conjugated
nanowires. However, there is relatively little experimental data on electron
transport through fused aromatic rings. Here we show using diaminoacenes that
conductivity depends not only on the number of fused aromatic rings in the
molecule, which defines the molecular HOMO-LUMO gap, but also on the position
of the amino groups on the rings. Specifically, we find that conductance is
highest with minimal disruption of aromaticity in fused aromatic nanowires.Comment: 2 pages, 3 figure
Galaxy Formation with local photoionisation feedback I. Methods
We present a first study of the effect of local photoionising radiation on
gas cooling in smoothed particle hydrodynamics simulations of galaxy formation.
We explore the combined effect of ionising radiation from young and old stellar
populations. The method computes the effect of multiple radiative sources using
the same tree algorithm used for gravity, so it is computationally efficient
and well resolved. The method foregoes calculating absorption and scattering in
favour of a constant escape fraction for young stars to keep the calculation
efficient enough to simulate the entire evolution of a galaxy in a cosmological
context to the present day. This allows us to quantify the effect of the local
photoionisation feedback through the whole history of a galaxy`s formation. The
simulation of a Milky Way like galaxy using the local photoionisation model
forms ~ 40 % less stars than a simulation that only includes a standard uniform
background UV field. The local photoionisation model decreases star formation
by increasing the cooling time of the gas in the halo and increasing the
equilibrium temperature of dense gas in the disc. Coupling the local radiation
field to gas cooling from the halo provides a preventive feedback mechanism
which keeps the central disc light and produces slowly rising rotation curves
without resorting to extreme feedback mechanisms. These preliminary results
indicate that the effect of local photoionising sources is significant and
should not be ignored in models of galaxy formation.Comment: Accepted for Publication in MNRAS, 13 pages, 13 figure
- …