12,667 research outputs found
Growing Pains or Opportunities? A Customer Survey of Three Farmers\u27 Markets in One Rural Community
The continued growth of farmers\u27 markets is presenting new challenges to Extension. As the number of markets expands, how can Extension help those in the same community work together for mutual benefit? The study reported here examined similarities and differences among customers attending three different farmers\u27 markets within a single locality in Gettysburg, Pennsylvania. Based on 370 customer surveys, study results underscore the diversity of markets operating within the same community and provide insights into ways Extension might assist markets to work together to expand their shared customer base, increase revenues, and better serve local residents
Active vs. Passive Green Space Use and Measures of Well-Being among University Students
Frequent exposure to green space has been linked to positive health and well-being in varying populations. Yet, there is still limited research exploring the restorative benefits associated with differing types of green space use among students living in the university setting. To address this gap, we explored green space use amongst a population of undergraduate students (n = 207) attending a university with abundant opportunities to access the restorative properties of nature. The purpose of this study was to examine the type and frequency of green space interactions that are most strongly associated with indicators of health and well-being, and investigate student characteristics associated with frequent use of green space. Results revealed that students who frequently engage with green spaces in active ways report higher quality of life, better overall mood, and lower perceived stress. Passive green space interactions were not strongly associated with indicators of health and well-being. Having had daily interactions with green space in childhood was associated with frequent green space use as a university student, and identified barriers to green space use included “not enough time,” and “not aware of opportunities” These results could assist in the tailoring of “green exercise” interventions conducted in the university setting
Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008
Aerosol measurements at Barrow, Alaska during the past 30 years have identified the long range transport of pollution associated with Arctic Haze as well as ocean-derived aerosols of more local origin. Here, we focus on measurements of aerosol chemical composition to assess (1) trends in Arctic Haze aerosol and implications for source regions, (2) the interaction between pollution-derived and ocean-derived aerosols and the resulting impacts on the chemistry of the Arctic boundary layer, and (3) the response of aerosols to a changing climate. Aerosol chemical composition measured at Barrow, AK during the Arctic haze season is compared for the years 1976–1977 and 1997–2008. Based on these two data sets, concentrations of non-sea salt (nss) sulfate (SO<sub>4</sub><sup>=</sup>) and non-crustal (nc) vanadium (V) have decreased by about 60% over this 30 year period. Consistency in the ratios of nss SO<sub>4</sub><sup>=</sup>/ncV and nc manganese (Mn)/ncV between the two data sets indicates that, although emissions have decreased in the source regions, the source regions have remained the same over this time period. The measurements from 1997–2008 indicate that, during the haze season, the nss SO<sub>4</sub><sup>=</sup> aerosol at Barrow is becoming less neutralized by ammonium (NH<sub>4</sub><sup>+</sup>) yielding an increasing sea salt aerosol chloride (Cl<sup>&minus;</sup>) deficit. The expected consequence is an increase in the release of Cl atoms to the atmosphere and a change in the lifetime of volatile organic compounds (VOCs) including methane. In addition, summertime concentrations of biogenically-derived methanesulfonate (MSA<sup>&minus;</sup>) and nss SO<sub>4</sub><sup>=</sup> are increasing at a rate of 12 and 8% per year, respectively. Further research is required to assess the environmental factors behind the increasing concentrations of biogenic aerosol
Quantum Hall Spherical Systems: the Filling Fraction
Within the newly formulated composite fermion hierarchy the filling fraction
of a spherical quantum Hall system is obtained when it can be expressed as an
odd or even denominator fraction. A plot of as a function
of for a constant number of particles (up to N=10001) exhibits structure
of the fractional quantum Hall effect. It is confirmed that
for all particle-hole conjugate systems, except systems with , and
.Comment: 3 pages, Revtex, 7 PostScript figures, submitted to Phys. Rev. B
Rapid Communicatio
The Star Clusters in the Irregular Galaxy NGC 4449
We examine the star clusters in the irregular galaxy NGC 4449. We use a
near-infrared spectrum and broad-band images taken with the HST to place a
limit of 8--15 Myrs on the age of the bright central ojbect in NGC 4449. Its
luminosity and size suggest that it is comparable to young super star clusters.
However, there is a peculiar nucleated-bar structure at the center of this star
cluster, and we suggest that this structure is debris from the interaction that
has produced the counter-rotating gas systems and extended gas streamers in the
galaxy.
From the images we identify 60 other candidate compact star clusters in NGC
4449. Fourteen of these could be background elliptical galaxies or old globular
star clusters. Of the star clusters, three, in addition to the central object,
are potentially super star clusters, and many others are comparable to the
populous clusters found in the LMC. The star clusters span a large range in
ages with no obvious peak in cluster formation that might be attributed to the
interaction that the galaxy has experienced.Comment: To be published in PASP, Feb. 2001; also attainable from
ftp.lowell.edu, cd pub/dah/n4449pape
FooPar: A Functional Object Oriented Parallel Framework in Scala
We present FooPar, an extension for highly efficient Parallel Computing in
the multi-paradigm programming language Scala. Scala offers concise and clean
syntax and integrates functional programming features. Our framework FooPar
combines these features with parallel computing techniques. FooPar is designed
modular and supports easy access to different communication backends for
distributed memory architectures as well as high performance math libraries. In
this article we use it to parallelize matrix matrix multiplication and show its
scalability by a isoefficiency analysis. In addition, results based on a
empirical analysis on two supercomputers are given. We achieve close-to-optimal
performance wrt. theoretical peak performance. Based on this result we conclude
that FooPar allows to fully access Scala's design features without suffering
from performance drops when compared to implementations purely based on C and
MPI
Two-Stream Instability of Counter-Rotating Galaxies
The present study of the two-stream instability in stellar disks with
counter-rotating components of stars and/or gas is stimulated by recently
discovered counter-rotating spiral and S0 galaxies. Strong linear two-stream
instability of tightly-wrapped spiral waves is found for one and two-armed
waves with the pattern angular speed of the unstable waves always intermediate
between the angular speed of the co-rotating matter () and that of the
counter-rotating matter (). The instability arises from the
interaction of positive and negative energy modes in the co- and
counter-rotating components. The unstable waves are in general convective -
they move in radius and radial wavenumber space - with the result that
amplification of the advected wave is more important than the local growth
rate. For a galaxy of co-rotating stars and counter-rotating stars of
mass-fraction , or of counter-rotating gas of mass-fraction
, the largest amplification is usually for the one-armed
leading waves (with respect to the co-rotating stars). For the case of both
counter-rotating stars and gas, the largest amplifications are for , also for one-armed leading waves. The two-armed trailing
waves usually have smaller amplifications. The growth rates and amplifications
all decrease as the velocity spreads of the stars and/or gas increase. It is
suggested that the spiral waves can provide an effective viscosity for the gas
causing its accretion.Comment: 14 pages, submitted to ApJ. One table and 17 figures can be obtained
by sending address to R. Lovelace at [email protected]
Breathing in Low Mass Galaxies: A Study of Episodic Star Formation
We simulate the collapse of isolated dwarf galaxies using SPH + N-Body
simulations including a physically motivated description of the effects of
supernova feedback. As the gas collapses and stars form, the supernova feedback
disrupts enough gas to temporarily quench star formation. The gas flows outward
into a hot halo, where it cools until star formation can continue once more and
the cycle repeats. The star formation histories of isolated Local Group dwarf
galaxies exhibit similar episodic bursts of star formation. We examine the mass
dependence of the stellar velocity dispersions and find that they are no less
than half the velocity of the halos measured at the virial radius.Comment: 5 pages, 3 figures, accepted ApJ. Full resolution figures and movies
available at http://hpcc.astro.washington.edu/feedbac
- …