49 research outputs found

    On the Handling of Continuous-Valued Attributes in Decision Tree Generation

    Full text link
    We present a result applicable to classification learning algorithms that generate decision trees or rules using the information entropy minimization heuristic for discretizing continuous-valued attributes. The result serves to give a better understanding of the entropy measure, to point out that the behavior of the information entropy heuristic possesses desirable properties that justify its usage in a formal sense, and to improve the efficiency of evaluating continuous-valued attributes for cut value selection. Along with the formal proof, we present empirical results that demonstrate the theoretically expected reduction in evaluation effort for training data sets from real-world domains.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46964/1/10994_2004_Article_422458.pd

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Instance-Based Method to Extract Rules from Neural Networks

    No full text

    Experiments in Meta-Level Learning with ILP

    No full text
    When considering new datasets for analysis with machine learning algorithms, we encounter the problem of choosing the algorithm which is best suited for the task at hand. The aim of meta-level learning is to relate the performance of different machine learning algorithms to the characteristics of the dataset. The relation is induced on the basis of empirical data about the performance of machine learning algorithms on the different datasets

    In-plane stresses in edge stiffened swept panels

    No full text

    Image Categorization Using ESFS: A New Embedded Feature Selection Method Based on SFS

    No full text
    International audienceFeature subset selection is an important subject when training classifiers in Machine Learning (ML) problems. Too many input features in a ML problem may lead to the so-called "curse of dimensionality", which describes the fact that the complexity of the classifier parameters adjustment during training increases exponentially with the number of features. Thus, ML algorithms are known to suffer from important decrease of the prediction accuracy when faced with many features that are not necessary. In this paper, we introduce a novel embedded feature selection method, called ESFS, which is inspired from the wrapper method SFS since it relies on the simple principle to add incrementally most relevant features. Its originality concerns the use of mass functions from the evidence theory that allows to merge elegantly the information carried by features, in an embedded way, and so leading to a lower computational cost than original SFS. This approach has successfully been applied to the domain of image categorization and has shown its effectiveness through the comparison with other feature selection methods
    corecore