132 research outputs found

    Modelling Individual Evacuation Decisions during Natural Disasters: A Case Study of Volcanic Crisis in Merapi, Indonesia

    Get PDF
    As the size of human populations increases, so does the severity of the impacts of natural disasters. This is partly because more people are now occupying areas which are susceptible to hazardous natural events, hence, evacuation is needed when such events occur. Evacuation can be the most important action to minimise the impact of any disaster, but in many cases there are always people who are reluctant to leave. This paper describes an agent-based model (ABM) of evacuation decisions, focusing on the emergence of reluctant people in times of crisis and using Merapi, Indonesia as a case study. The individual evacuation decision model is influenced by several factors formulated from a literature review and survey. We categorised the factors influencing evacuation decisions into two opposing forces, namely, the driving factors to leave (evacuate) versus those to stay, to formulate the model. The evacuation decision (to stay/leave) of an agent is based on an evaluation of the strength of these driving factors using threshold-based rules. This ABM was utilised with a synthetic population from census microdata, in which everyone is characterised by the decision rule. Three scenarios with varying parameters are examined to calibrate the model. Validations were conducted using a retrodictive approach by performing spatial and temporal comparisons between the outputs of simulation and the real data. We present the results of the simulations and discuss the outcomes to conclude with the most plausible scenario

    Hydrology of debris-covered glaciers in High Mountain Asia

    Get PDF
    The hydrological characteristics of debris-covered glaciers are known to be fundamentally different from those of clean-ice glaciers, even within the same climatological, geological, and geomorphological setting. Understanding how these characteristics influence the timing and magnitude of meltwater discharge is particularly important for regions where downstream communities rely on this resource for sanitation, irrigation, and hydropower, such as High Mountain Asia. The hydrology of debris-covered glaciers is complex: rugged surface topographies typically route meltwater through compound supraglacial-englacial systems involving both channels and ponds, as well as pathways that remain unknown. Low-gradient tongues that extend several kilometres retard water conveyance and promote englacial storage. Englacial conduits are frequently abandoned and reactivated as water supply changes, new lines of permeability are exploited, and drainage is captured due to high rates of surface and subsurface change. Seasonal influences, such as the monsoon, are superimposed on these distinctive characteristics, reorganising surface and subsurface drainage rapidly from one season to the next. Recent advances in understanding have mostly come from studies aimed at quantifying and describing supraglacial processes; little is known about the subsurface hydrology, particularly the nature (or even existence) of subglacial drainage. In this review, we consider in turn the supraglacial, englacial, subglacial, and proglacial hydrological domains of debris-covered glaciers in High Mountain Asia. We summarise different lines of evidence to establish the current state of knowledge and, in doing so, identify major knowledge gaps. Finally, we use this information to suggest six themes for future hydrological research at High Mountain Asian debris-covered glaciers in order to make timely long-term predictions of changes in the water they supply

    Continuous borehole optical televiewing reveals variable englacial debris concentrations at Khumbu Glacier, Nepal

    Get PDF
    Surface melting of High Mountain Asian debris-covered glaciers shapes the seasonal water supply to millions of people. This melt is strongly influenced by the spatially variable thickness of the supraglacial debris layer, which is itself partially controlled by englacial debris concentration and melt-out. Here, we present measurements of deep englacial debris concentrations from debris-covered Khumbu Glacier, Nepal, based on four borehole optical televiewer logs, each up to 150 m long. The mean borehole englacial debris content is ≤ 0.7% by volume in the glacier’s mid-to-upper ablation area, and increases to 6.4% by volume near the terminus. These concentrations are higher than those reported for other valley glaciers, although those measurements relate to discrete samples while our approach yields a continuous depth profile. The vertical distribution of englacial debris increases with depth, but is also highly variable, which will complicate predictions of future rates of surface melt and debris exhumation at such glaciers

    Sub-regional variability in the influence of ice-contact lakes on Himalayan glaciers

    Get PDF
    Ice-contact lakes modify glacier geometry and dynamics by shifting the majority of mass loss from the ice surface to the terminus. Lake-terminating glaciers are known to experience greater thinning rates and higher velocities than land-terminating glaciers, but the controls on variability in surface elevation change and ice flow between lake-terminating glaciers in different regions remain poorly explored. We combined existing datasets of glacier velocity, surface elevation change and glacial lake area to characterise the evolution of 352 lake-terminating and land-terminating glaciers within three Himalayan sub-regions between 2000 and 2019. These analyses show that the influence of ice-contact lakes propagates up-glacier across only the lowermost 30% of the hypsometric distribution, even where lakes are well established. We find that ice-contact lakes only affect glacier behaviour when the lakes reach an advanced evolutionary stage; most clearly manifested in the Eastern Himalaya by statistically robust differences in glacier-wide surface elevation change between lake-terminating (–0.68 ± 0.05 m a–1) and land-terminating (–0.54 ± 0.04 m a–1) glaciers. These differences are driven by the presence of a greater number of well-developed ice-contact lakes in the Eastern Himalaya compared to in the Western and Central Himalaya, resulting from greater mass loss rates to date
    • …
    corecore