51 research outputs found

    Cream replacement by hydrocolloid-stabilized emulsions to reduce fat digestion in panna cottas

    Full text link
    [EN] The effect of emulsions based on different hydrocolloids (xanthan gum, hydroxypropyl methylcellulose and methylcellulose) on the structural, textural and sensory properties and lipid digestibility of panna cottas was investigated. The hydrocolloid-based emulsions presented similar microstructures. However, the panna cottas formulated with these emulsions presented large microstructural differences, which therefore also led to different textural and sensory properties. The differences in the initial microstructure of the panna cottas, the microstructural changes that they exhibited at the beginning of lipid digestion and the mechanisms of emulsification imparted by the hydrocolloids led to different extents of digestion. The panna cotta prepared with the hydroxypropyl methylcellulose-based emulsion was well accepted by the consumers and presented lower initial rate and extent of digestion (rate: 1,52% free fatty acid (FFA)/min; extent: 49.72% FFA) than the control panna cotta (3.69% FFA/min; 61.81% FFA). These results may contribute to the manufacture of reduced lipid digestion foods which could be used in weight management.The authors are grateful to the Spanish Ministry of the Economy and Competitiveness for financial support (AGL2015-68923-C2-2-R (MINECO/FEDER)) and gratefully acknowledge the financial support of EU FEDER funds. They would also like to thank Mary Georgina Hardinge for assistance in correcting the English manuscript. There are no conflicts of interest to declare.Borreani, J.; Hernando Hernando, MI.; Quiles Chuliá, MD. (2020). Cream replacement by hydrocolloid-stabilized emulsions to reduce fat digestion in panna cottas. LWT - Food Science and Technology. 119:1-7. https://doi.org/10.1016/j.lwt.2019.108896S17119Arancibia, C., Castro, C., Jublot, L., Costell, E., & Bayarri, S. (2015). Colour, rheology, flavour release and sensory perception of dairy desserts. Influence of thickener and fat content. LWT - Food Science and Technology, 62(1), 408-416. doi:10.1016/j.lwt.2014.08.024Bellesi, F. A., Martinez, M. J., Pizones Ruiz-Henestrosa, V. M., & Pilosof, A. M. R. (2016). Comparative behavior of protein or polysaccharide stabilized emulsion under in vitro gastrointestinal conditions. Food Hydrocolloids, 52, 47-56. doi:10.1016/j.foodhyd.2015.06.007Borreani, J., Espert, M., Salvador, A., Sanz, T., Quiles, A., & Hernando, I. (2017). Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion. Food & Function, 8(4), 1547-1557. doi:10.1039/c7fo00159bBorreani, J., Hernando, I., Salvador, A., & Quiles, A. (2017). New hydrocolloid-based emulsions for replacing fat in panna cottas: a structural and sensory study. Journal of the Science of Food and Agriculture, 97(14), 4961-4968. doi:10.1002/jsfa.8373Borreani, J., Llorca, E., Quiles, A., & Hernando, I. (2017). Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion. Food Chemistry, 220, 137-144. doi:10.1016/j.foodchem.2016.09.202Espert, M., Borreani, J., Hernando, I., Quiles, A., Salvador, A., & Sanz, T. (2017). Relationship between cellulose chemical substitution, structure and fat digestion in o/w emulsions. Food Hydrocolloids, 69, 76-85. doi:10.1016/j.foodhyd.2017.01.030Espinal-Ruiz, M., Parada-Alfonso, F., Restrepo-Sánchez, L.-P., Narváez-Cuenca, C.-E., & McClements, D. J. (2014). Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated gastrointestinal conditions. Food Funct., 5(12), 3083-3095. doi:10.1039/c4fo00615aHe, Q., Hort, J., & Wolf, B. (2016). Predicting sensory perceptions of thickened solutions based on rheological analysis. Food Hydrocolloids, 61, 221-232. doi:10.1016/j.foodhyd.2016.05.010Hernández-Carrión, M., Vázquez-Gutiérrez, J. L., Hernando, I., & Quiles, A. (2013). Impact of High Hydrostatic Pressure and Pasteurization on the Structure and the Extractability of Bioactive Compounds of Persimmon «Rojo Brillante». Journal of Food Science, 79(1), C32-C38. doi:10.1111/1750-3841.12321Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability, 59(1-3), 81-84. doi:10.1016/s0141-3910(97)00180-8Lett, A. M., Norton, J. E., & Yeomans, M. R. (2016). Emulsion oil droplet size significantly affects satiety: A pre-ingestive approach. Appetite, 96, 18-24. doi:10.1016/j.appet.2015.08.043Lett, A. M., Yeomans, M. R., Norton, I. T., & Norton, J. E. (2016). Enhancing expected food intake behaviour, hedonics and sensory characteristics of oil-in-water emulsion systems through microstructural properties, oil droplet size and flavour. Food Quality and Preference, 47, 148-155. doi:10.1016/j.foodqual.2015.03.011Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 126(2), 498-505. doi:10.1016/j.foodchem.2010.11.027Li, Y., & McClements, D. J. (2010). New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 58(13), 8085-8092. doi:10.1021/jf101325mLobato-Calleros, C., Reyes-Hernández, J., Beristain, C. I., Hornelas-Uribe, Y., Sánchez-García, J. E., & Vernon-Carter, E. J. (2007). Microstructure and texture of white fresh cheese made with canola oil and whey protein concentrate in partial or total replacement of milk fat. Food Research International, 40(4), 529-537. doi:10.1016/j.foodres.2006.10.011McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2008). Designing Food Structure to Control Stability, Digestion, Release and Absorption of Lipophilic Food Components. Food Biophysics, 3(2), 219-228. doi:10.1007/s11483-008-9070-yMun, S., Decker, E. A., & McClements, D. J. (2007). Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Research International, 40(6), 770-781. doi:10.1016/j.foodres.2007.01.007Mun, S., Kim, J., McClements, D. J., Kim, Y.-R., & Choi, Y. (2017). Fluorescence imaging of spatial location of lipids and proteins during digestion of protein-stabilized oil-in-water emulsions: A simulated gastrointestinal tract study. Food Chemistry, 219, 297-303. doi:10.1016/j.foodchem.2016.09.158Qin, D., Yang, X., Gao, S., Yao, J., & McClements, D. J. (2016). Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides. Journal of Food Science, 81(7), C1636-C1645. doi:10.1111/1750-3841.13361Qiu, C., Zhao, M., Decker, E. A., & McClements, D. J. (2015). Influence of anionic dietary fibers (xanthan gum and pectin) on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion. Food Research International, 74, 131-139. doi:10.1016/j.foodres.2015.04.022Sanz, T., Falomir, M., & Salvador, A. (2015). Reversible thermal behaviour of vegetable oil cellulose ether emulsions as fat replacers. Influence of glycerol. Food Hydrocolloids, 46, 19-27. doi:10.1016/j.foodhyd.2014.11.030Torcello-Gómez, A., & Foster, T. J. (2016). Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions. Carbohydrate Polymers, 144, 495-503. doi:10.1016/j.carbpol.2016.03.00

    Interactions Between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies

    Full text link
    [EN] Blackcurrant pomace, rich in fiber and polyphenols, can be used as added-value ingredientfor food formulation. However, the bounding of polyphenols to pomace and the interactions thattake place with food nutrients modify polyphenol bioaccessibility. This work studied the interactionsbetween polyphenols and the main macronutrients in foods, and the changes that occurred duringin vitrodigestion, using model systems. Model systems were formulated with (i) water, (ii) wheatstarch, (iii) olive oil, (iv) whey protein, and (v) a model combining all the ingredients. Polyphenolswere added from two sources: as pomace and as a polyphenolic pomace extract. Interactions betweenpolyphenols and macronutrients were studied using light microscopy; total phenolic content (TPC)and antioxidant capacity (AC) were determined before and after thein vitrodigestion process.Lastly, the bioaccessibility of the samples was calculated. Polyphenols incorporated into the modelsystems as pomace increased their bioaccessibility if compared to polyphenols added as extract.For single-nutrient model systems formulated with pomace, the bioaccessibility was higher thanwhen the system contained all the nutrients. Of all the components studied, the greatest effect onbioaccessibility was observed for proteins.This research was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-Spain) through the BERRYPOM. Adding value to processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods project included in the ERA-NET-SUSFOOD program.Diez-Sánchez, E.; Quiles Chuliá, MD.; Hernando Hernando, MI. (2021). Interactions Between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies. Foods. 10(4):1-14. https://doi.org/10.3390/foods10040847S11410

    High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper

    Full text link
    [EN] Red sweet peppers (Capsicum annuum) are an excellent source of essential nutrients and bioactive compounds. High hydrostatic pressures (HHP) not only increase shelf-life but also maintain nutritional and organoleptic properties better in a number of food products. The aim of this work was to measure the effect of HHP and a thermal treatment, pasteurization (PA) in a water bath at 70 °C for 10 min, on some bioactive compounds (fibre, carotenoids and antioxidant activity) and on the texture (TPA; firmness and shear force) of red Lamuyo-type sweet peppers, in order to discover the relationship between treatment (HHP and PA), tissue microstructure and bioactive compound extractability. The results show that HHP at 500 MPa and PA treatments had less impact on the microstructure, bioactive compound content (fibre and antioxidant activity) and texture of red sweet peppers, than when low pressures were used. Consequently, new functional foods could be developed using red sweet pepper tissues treated with high pressures (500 MPa) and/or PA. Industrial relevance Today¿s consumers demand foods that are rich in bioactive compounds with beneficial health effects and safer, more natural, minimally-processed food products. Red sweet peppers (Capsicum annuum) are an excellent source of essential nutrients and bioactive compounds such as carotenoids and fibre. High hydrostatic pressure (HHP) processing is considered one of the most economically viable of the non-thermal technologies that helps to preserve red sweet peppers with high nutritional and quality parameters. Therefore, it would be interesting to study the microstructure of HHP-treated red sweet pepper tissues in order to discover whether this treatment promotes the extractability of bioactive compounds, and to compare the results with those obtained by pasteurizing the red sweet pepper. Thus, these enhanced red sweet peppers could be used as ingredients in the formulation of new functional foods.The authors wish to thank the Spanish Ministry of Science and Innovation for financial support (project AGL2011-30064-C02-02) and the Universitat Politecnica de Valencia (UPV) for the FPI grant awarded to Maria Hernandez Carrion. The authors also wish to thank Mary Georgina Hardinge for assistance with the English manuscriptHernández Carrión, M.; Hernando Hernando, MI.; Quiles Chuliá, MD. (2014). High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innovative Food Science & Emerging Technologies. 26:76-85. https://doi.org/10.1016/j.ifset.2014.06.004S76852

    Designing a Clean Label Sponge Cake with Reduced Fat Content

    Full text link
    [EN] The fat in a sponge cake formulation was partially replaced (0%, 30%, 50%, and 70%) with OptiSolTM5300.This natural functional ingredient derived from flax seeds, rich in fiber and alpha-linoleic acid, provides a natural substitute for guar and xanthan gums, avoiding E-numbers on labels. The structure and some physicochemical properties of the formulations were examined, sensory analysis was conducted and changes in starch digestibility due to adding this ingredient were determined. Increasing quantities of OptiSolTM5300 gave harder cakes, with less weight loss during baking, without affecting the final cake height. There were no significant differences (P > 0.05) in texture, flavor and overall acceptance between the control and the 30% substitution cake, nor in the rapidly digestible starch values. Consequently, replacing up to 30% of the fat with OptiSolTM5300 gives a new product with health benefits and a clean label that resembles the full-fat sponge cake.The authors are grateful to INIA for financial support through the BERRYPOM- Adding value to fruit processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods project included in the ERA-NET - SUSFOOD program.Eslava-Zomeño, C.; Quiles Chuliá, MD.; Hernando Hernando, MI. (2016). Designing a Clean Label Sponge Cake with Reduced Fat Content. Journal of Food Science. 81(10):2352-2359. doi:10.1111/1750-3841.1344623522359811

    Inactivation kinetics and cell morphology of E.coli and S.carevisiae trated with ultrasound-assited supercritical CO2

    Full text link
    [EN] The inactivation kinetics of Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) cells in apple juice subjected to supercritical carbon dioxide (SC-CO2) assisted by high power ultrasound (HPU) at different pressures (100 350 bar, 36 °C) and temperatures (31 41 °C, 225 bar) were studied. On average, shorter process times were required to achieve the total inactivation of S. cerevisiae (2 6 min) in apple juice than E. coli (7 min). The inactivation kinetics of E. coli and S. cerevisiae were satisfactorily described by the Peleg Type A and theWeibull model, respectively, considering temperature and pressure as model parameters. Transmission electron microscopy (TEM) and light microscopy (LM) techniques were used to study the cellular changes of SC-CO2 (350 bar, 36 °C, 5 min) and SC-CO2+HPU (350 bar, 36 °C, 5 min, 40W)treated cells. TEMand LMimages revealed that 5 min of SC-CO2 treatment generated minor morphological modifications, although no inactivation of the cells was obtained. However, 5 min of SC-CO2+HPU treatment totally inactivated the population of both microorganisms. SC-CO2 + HPU produced the degradation of the internal cell content and the disruption of the cell wall and plasmalemma, which prevented the possible regrowth of the cells during refrigerated storage.The authors acknowledge the financial support from project CSD2007-00016 (CONSOLIDER-INGENIO 2010, Spanish Ministry of Science and Innovation) and from project PROMETEO/2010/062; Generalitat Valenciana. We thank Dr. Emilia Matallana and Dr. Paula Alepuz for the generous gift of S. cerevisiae T73 and E. coli DH1 strains, respectively.Ortuño Cases, C.; Quiles Chuliá, MD.; Benedito Fort, JJ. (2014). Inactivation kinetics and cell morphology of E.coli and S.carevisiae trated with ultrasound-assited supercritical CO2. Food Research International. 62:955-964. doi:10.1016/j.foodres.2014.05.012S9559646

    Using different fibers to replace fat in sponge cakes: In vitro starch digestion and physico-structural studies

    Full text link
    [EN] This study assessed the effect of substituting 30% of fat by soluble, insoluble fiber, or a mix of both fibers in sponge cake quality, structure, acceptability, and starch digestibility. The apparent viscosity of the different formulations was measured and micro-baking was simulated. Texture profile tests were carried out and the crumb structure was examined. In vitro digestion was performed to study the digestibility of starch and a sensory test was carried out to know consumer acceptance. The soluble fiber (maltodextrin) affected the structure and quality of the cakes less than the insoluble fiber (potato fiber) and the use of soluble fiber in the formulation resulted in lower glucose release under in vitro conditions. Moreover, the consumer did not find differences among the control cake and the cakes prepared with soluble fiber. Considering the results as a whole, soluble fiber may be used for partial replacement of fat in sponge cake formulations and may constitute an appropriate strategy for obtaining healthy sponge cakes.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: INIA for financial support through the BERRYPOM - Adding value to fruit processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods project, included in the ERA-NET - SUSFOOD program.Díez-Sánchez, E.; Llorca Martínez, ME.; Quiles Chuliá, MD.; Hernando Hernando, MI. (2018). Using different fibers to replace fat in sponge cakes: In vitro starch digestion and physico-structural studies. Food Science and Technology International. 24(6):533-543. https://doi.org/10.1177/1082013218771412S533543246Angioloni, A., & Collar, C. (2011). Physicochemical and nutritional properties of reduced-caloric density high-fibre breads. LWT - Food Science and Technology, 44(3), 747-758. doi:10.1016/j.lwt.2010.09.008Bae, I. Y., Lee, H. I., Ko, A., & Lee, H. G. (2013). Substituting whole grain flour for wheat flour: Impact on cake quality and glycemic index. Food Science and Biotechnology, 22(5), 1-7. doi:10.1007/s10068-013-0216-4Brennan, C. S. (2005). Dietary fibre, glycaemic response, and diabetes. Molecular Nutrition & Food Research, 49(6), 560-570. doi:10.1002/mnfr.200500025Dura, A., Błaszczak, W., & Rosell, C. M. (2014). Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers, 101, 837-845. doi:10.1016/j.carbpol.2013.10.013Eslava-Zomeño, C., Quiles, A., & Hernando, I. (2016). Designing a Clean Label Sponge Cake with Reduced Fat Content. Journal of Food Science, 81(10), C2352-C2359. doi:10.1111/1750-3841.13446Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427-437. doi:10.1016/s0271-5317(97)00010-9Grigelmo-Miguel, N., Carreras-Boladeras, E., & Martín-Belloso, O. (2001). Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 7(5), 425-431. doi:10.1106/fllh-k91m-1g34-y0elGularte, M. A., Gómez, M., & Rosell, C. M. (2011). Impact of Legume Flours on Quality and In Vitro Digestibility of Starch and Protein from Gluten-Free Cakes. Food and Bioprocess Technology, 5(8), 3142-3150. doi:10.1007/s11947-011-0642-3Hardacre, A. K., Yap, S.-Y., Lentle, R. G., & Monro, J. A. (2015). The effect of fibre and gelatinised starch type on amylolysis and apparent viscosity during in vitro digestion at a physiological shear rate. Carbohydrate Polymers, 123, 80-88. doi:10.1016/j.carbpol.2015.01.013Kratz, M., Baars, T., & Guyenet, S. (2012). The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. European Journal of Nutrition, 52(1), 1-24. doi:10.1007/s00394-012-0418-1Lim, J., Ko, S., & Lee, S. (2014). Use of Yuja (Citrus junos) pectin as a fat replacer in baked foods. Food Science and Biotechnology, 23(6), 1837-1841. doi:10.1007/s10068-014-0251-9Martínez-Cervera, S., Salvador, A., Muguerza, B., Moulay, L., & Fiszman, S. M. (2011). Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT - Food Science and Technology, 44(3), 729-736. doi:10.1016/j.lwt.2010.06.035Martínez-Cervera, S., Sanz, T., Salvador, A., & Fiszman, S. M. (2012). Rheological, textural and sensorial properties of low-sucrose muffins reformulated with sucralose/polydextrose. LWT - Food Science and Technology, 45(2), 213-220. doi:10.1016/j.lwt.2011.08.001Matsakidou, A., Blekas, G., & Paraskevopoulou, A. (2010). Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT - Food Science and Technology, 43(6), 949-957. doi:10.1016/j.lwt.2010.02.002Mente, A., de Koning, L., Shannon, H. S., & Anand, S. S. (2009). A Systematic Review of the Evidence Supporting a Causal Link Between Dietary Factors and Coronary Heart Disease. Archives of Internal Medicine, 169(7), 659. doi:10.1001/archinternmed.2009.38Mishellany-Dutour, A., Peyron, M.-A., Croze, J., François, O., Hartmann, C., Alric, M., & Woda, A. (2011). Comparison of food boluses prepared in vivo and by the AM2 mastication simulator. Food Quality and Preference, 22(4), 326-331. doi:10.1016/j.foodqual.2010.12.003Oh, I. K., Bae, I. Y., & Lee, H. G. (2014). In vitro starch digestion and cake quality: Impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 63, 98-103. doi:10.1016/j.ijbiomac.2013.10.038Psimouli, V., & Oreopoulou, V. (2013). The Effect of Fat Replacers on Batter and Cake Properties. Journal of Food Science, 78(10), C1495-C1502. doi:10.1111/1750-3841.12235Rodríguez-García, J., Puig, A., Salvador, A., & Hernando, I. (2012). Optimization of a Sponge Cake Formulation with Inulin as Fat Replacer: Structure, Physicochemical, and Sensory Properties. Journal of Food Science, 77(2), C189-C197. doi:10.1111/j.1750-3841.2011.02546.xRodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Optimizing Mixing during the Sponge Cake Manufacturing Process. Cereal Foods World, 59(6), 287-292. doi:10.1094/cfw-59-6-0287Rodríguez-García, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-zRomán, L., Santos, I., Martínez, M. M., & Gómez, M. (2015). Effect of extruded wheat flour as a fat replacer on batter characteristics and cake quality. Journal of Food Science and Technology, 52(12), 8188-8195. doi:10.1007/s13197-015-1909-xRufián-Henares, J. A., & Delgado-Andrade, C. (2009). Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Research International, 42(3), 394-400. doi:10.1016/j.foodres.2009.01.011Smith, F., Pan, X., Bellido, V., Toole, G. A., Gates, F. K., Wickham, M. S. J., … Mills, E. N. C. (2015). Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion. Molecular Nutrition & Food Research, 59(10), 2034-2043. doi:10.1002/mnfr.201500262Soong, Y. Y., Tan, S. P., Leong, L. P., & Henry, J. K. (2014). Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour. Food Chemistry, 164, 462-469. doi:10.1016/j.foodchem.2014.05.041Viebke, C., Al-Assaf, S., & Phillips, G. O. (2014). Food hydrocolloids and health claims. Bioactive Carbohydrates and Dietary Fibre, 4(2), 101-114. doi:10.1016/j.bcdf.2014.06.006Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science & Technology, 45(12), 2531-2537. doi:10.1111/j.1365-2621.2010.02444.

    Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability

    Full text link
    [EN] Numerous studies conducted have shown a direct relationship between the high consumption of saturated andtrans-fats and the risk of suffering from cardiovascular diseases, diabetes, and different cancers. Oleogels, with a suitable lipid profile of mono-, poly-unsaturated fatty acids, and similar functionality to traditional solid fat, can be a healthy alternative in food formulation. The aim of this study is to develop edible oleogels with a healthy and stable lipid profile, using the emulsion-template approach and hydrocolloids as oleogelators. Oleogels were developed from sunflower oil and sunflower oil with a high content of monounsaturated acids, using hydroxypropylmethylcellulose (HPMC) and xanthan gum (XG) as oleogelators. The influence of two drying conditions (60 degrees C for 24 h and 80 degrees C for 10 h 30 min) along with the composition of the oil on the structural, physical, and oxidative stability of oleogels were studied. All oleogels presented a stable network and high physical stability with oil losses 10(5)Pa related to solid gel-like behavior. Oleogels made with sunflower oil rich in monounsaturated fatty acids resulted in higher oxidative stability, with those developed at drying temperatures of 80 degrees C for 10 h 30 min having a greater structural and physical stability.The authors would like to thank Universitat Politecnica de Valencia by FPI-UPV 2017 grant and the project RTI2018-099738-B-C22 from the Ministerio de Ciencia, Innovacion y Universidades.Bascuas-Véntola, SM.; Salvador, A.; Hernando Hernando, MI.; Quiles Chuliá, MD. (2020). Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability. Frontiers in Sustainable Food Systems. 4:1-8. https://doi.org/10.3389/fsufs.2020.00111S184Abdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Hosseini, S. M., & Shahin, R. (2020). Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method. Journal of Texture Studies, 51(2), 290-299. doi:10.1111/jtxs.12469Albi, T., Lanzón, A., Guinda, A., Pérez-Camino, M. C., & León, M. (1997). Microwave and Conventional Heating Effects on Some Physical and Chemical Parameters of Edible Fats. Journal of Agricultural and Food Chemistry, 45(8), 3000-3003. doi:10.1021/jf970168cBascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2020). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458-1467. doi:10.1111/ijfs.14469Bastiat, G., & Leroux, J.-C. (2009). Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry, 19(23), 3867. doi:10.1039/b822657aBodennec, M., Guo, Q., & Rousseau, D. (2016). Molecular and microstructural characterization of lecithin-based oleogels made with vegetable oil. RSC Advances, 6(53), 47373-47381. doi:10.1039/c6ra04324kCamino, N. A., Pérez, O. E., Sanchez, C. C., Rodriguez Patino, J. M., & Pilosof, A. M. R. (2009). Hydroxypropylmethylcellulose surface activity at equilibrium and adsorption dynamics at the air–water and oil–water interfaces. Food Hydrocolloids, 23(8), 2359-2368. doi:10.1016/j.foodhyd.2009.06.013Carnali, J. O. (1992). Gelation in physically associating biopolymer systems. Rheologica Acta, 31(5), 399-412. doi:10.1007/bf00701120Cho, Y. J., & Lee, S. (2015). Extraction of rutin from Tartary buckwheat milling fractions and evaluation of its thermal stability in an instant fried noodle system. Food Chemistry, 176, 40-44. doi:10.1016/j.foodchem.2014.12.020De Vries, A., Gomez, Y. L., van der Linden, E., & Scholten, E. (2017). The effect of oil type on network formation by protein aggregates into oleogels. RSC Advances, 7(19), 11803-11812. doi:10.1039/c7ra00396jMorais, A. R. do V., Alencar, É. do N., Xavier Júnior, F. H., Oliveira, C. M. de, Marcelino, H. R., Barratt, G., … Elaissari, A. (2016). Freeze-drying of emulsified systems: A review. International Journal of Pharmaceutics, 503(1-2), 102-114. doi:10.1016/j.ijpharm.2016.02.047Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., … Dewettinck, K. (2016). The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. European Journal of Lipid Science and Technology, 118(12), 1903-1914. doi:10.1002/ejlt.201500172Encina-Zelada, C. R., Cadavez, V., Teixeira, J. A., & Gonzales-Barron, U. (2019). Optimization of Quality Properties of Gluten-Free Bread by a Mixture Design of Xanthan, Guar, and Hydroxypropyl Methyl Cellulose Gums. Foods, 8(5), 156. doi:10.3390/foods8050156Giacintucci, V., Di Mattia, C. D., Sacchetti, G., Flamminii, F., Gravelle, A. J., Baylis, B., … Pittia, P. (2018). Ethylcellulose oleogels with extra virgin olive oil: the role of oil minor components on microstructure and mechanical strength. Food Hydrocolloids, 84, 508-514. doi:10.1016/j.foodhyd.2018.05.030Gómez-Alonso, S., Mancebo-Campos, V., Desamparados Salvador, M., & Fregapane, G. (2004). Oxidation kinetics in olive oil triacylglycerols under accelerated shelf-life testing (25–75 °C). European Journal of Lipid Science and Technology, 106(6), 369-375. doi:10.1002/ejlt.200300921Gravelle, A. J., Barbut, S., & Marangoni, A. G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Research International, 48(2), 578-583. doi:10.1016/j.foodres.2012.05.020It's Your Health-Fats: The Good The Bad and The Ugly2012Jiang, Y., Liu, L., Wang, B., Sui, X., Zhong, Y., Zhang, L., … Xu, H. (2018). Cellulose-rich oleogels prepared with an emulsion-templated approach. Food Hydrocolloids, 77, 460-464. doi:10.1016/j.foodhyd.2017.10.023Kozłowska, M., & Gruczyńska, E. (2018). Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chemical Papers, 72(10), 2607-2615. doi:10.1007/s11696-018-0516-5Lapasin, R., & Pricl, S. (1995). Rheology of polysaccharide systems. Rheology of Industrial Polysaccharides: Theory and Applications, 250-494. doi:10.1007/978-1-4615-2185-3_4Laredo, T., Barbut, S., & Marangoni, A. G. (2011). Molecular interactions of polymer oleogelation. Soft Matter, 7(6), 2734. doi:10.1039/c0sm00885kLee, J., Lee, Y., & Choe, E. (2006). Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. European Food Research and Technology, 226(1-2), 239-246. doi:10.1007/s00217-006-0532-5Li, X., Al-Assaf, S., Fang, Y., & Phillips, G. O. (2013). Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface. Carbohydrate Polymers, 91(2), 573-580. doi:10.1016/j.carbpol.2012.08.075Lim, J., Jeong, S., Oh, I. K., & Lee, S. (2017). Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT, 84, 788-794. doi:10.1016/j.lwt.2017.06.054Luo, S.-Z., Hu, X.-F., Jia, Y.-J., Pan, L.-H., Zheng, Z., Zhao, Y.-Y., … Jiang, S.-T. (2019). Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocolloids, 95, 76-87. doi:10.1016/j.foodhyd.2019.04.016Martins, A. J., Cerqueira, M. A., Cunha, R. L., & Vicente, A. A. (2017). Fortified beeswax oleogels: effect of β-carotene on the gel structure and oxidative stability. Food & Function, 8(11), 4241-4250. doi:10.1039/c7fo00953dMaskan, M., & İ. Bağcı, H. (2003). The recovery of used sunflower seed oil utilized in repeated deep-fat frying process. European Food Research and Technology, 218(1), 26-31. doi:10.1007/s00217-003-0794-0Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Physical Properties, Microstructure, Intermolecular Forces, and Oxidation Stability of Soybean Oil Oleogels Structured by Different Cellulose Ethers. European Journal of Lipid Science and Technology, 120(6), 1700287. doi:10.1002/ejlt.201700287Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 246, 137-149. doi:10.1016/j.foodchem.2017.10.154Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17-29. doi:10.1016/j.foodhyd.2017.09.006Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368-377. doi:10.1016/j.foodres.2018.03.051Te Morenga, L., & Montez, J. M. (2017). Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLOS ONE, 12(11), e0186672. doi:10.1371/journal.pone.0186672Mozaffarian, D., & Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63(S2), S22-S33. doi:10.1038/sj.ejcn.1602976Oh, I., Lee, J., Lee, H. G., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 122, 566-572. doi:10.1016/j.foodres.2019.01.012Oh, I. K., & Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids, 77, 796-802. doi:10.1016/j.foodhyd.2017.11.022O’Keefe, S. F., & Pike, O. A. (2010). Fat Characterization. Food Analysis, 239-260. doi:10.1007/978-1-4419-1478-1_14Okuro, P. K., Tavernier, I., Bin Sintang, M. D., Skirtach, A. G., Vicente, A. A., Dewettinck, K., & Cunha, R. L. (2018). Synergistic interactions between lecithin and fruit wax in oleogel formation. Food & Function, 9(3), 1755-1767. doi:10.1039/c7fo01775hPatel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct., 5(11), 2833-2841. doi:10.1039/c4fo00624kPatel, A. R., Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-Based Oleogels Prepared with an Emulsion-Templated Approach. ChemPhysChem, 15(16), 3435-3439. doi:10.1002/cphc.201402473Patel, A. R., Rajarethinem, P. S., Cludts, N., Lewille, B., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2014). Biopolymer-Based Structuring of Liquid Oil into Soft Solids and Oleogels Using Water-Continuous Emulsions as Templates. Langmuir, 31(7), 2065-2073. doi:10.1021/la502829uPatel, A. R., Schatteman, D., Lesaffer, A., & Dewettinck, K. (2013). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Adv., 3(45), 22900-22903. doi:10.1039/c3ra44763dPehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2017). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58(8), 1330-1341. doi:10.1080/10408398.2016.1256866Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2008). Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter, 4(7), 1483. doi:10.1039/b803299hRomoscanu, A. I., & Mezzenga, R. (2006). Emulsion-Templated Fully Reversible Protein-in-Oil Gels. Langmuir, 22(18), 7812-7818. doi:10.1021/la060878pScholten, E. (2019). Edible oleogels: how suitable are proteins as a structurant? Current Opinion in Food Science, 27, 36-42. doi:10.1016/j.cofs.2019.05.001Singh, A., Auzanneau, F.-I., & Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. Food Research International, 97, 307-317. doi:10.1016/j.foodres.2017.04.022Tanti, R., Barbut, S., & Marangoni, A. G. (2016). Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocolloids, 61, 329-337. doi:10.1016/j.foodhyd.2016.05.032Tanti, R., Barbut, S., & Marangoni, A. G. (2016). Oil stabilization of natural peanut butter using food grade polymers. Food Hydrocolloids, 61, 399-408. doi:10.1016/j.foodhyd.2016.05.034Tavakoli, A., Sahari, M. A., & Barzegar, M. (2017). Antioxidant activity of Berberis integerrima seed oil as a natural antioxidant on the oxidative stability of soybean oil. International Journal of Food Properties, 20(sup3), S2914-S2925. doi:10.1080/10942912.2017.1382509Tavernier, I., Doan, C. D., Van der Meeren, P., Heyman, B., & Dewettinck, K. (2018). The Potential of Waxes to Alter the Microstructural Properties of Emulsion-Templated Oleogels. European Journal of Lipid Science and Technology, 120(3), 1700393. doi:10.1002/ejlt.201700393Consumption of Vegetable Oils Worldwide from 20135/2014 to 2019/2020, by Oil Type (in Million Metric Tons)2020Vintiloiu, A., & Leroux, J.-C. (2008). Organogels and their use in drug delivery — A review. Journal of Controlled Release, 125(3), 179-192. doi:10.1016/j.jconrel.2007.09.014Wollenweber, C., Makievski, A. V., Miller, R., & Daniels, R. (2000). Adsorption of hydroxypropyl methylcellulose at the liquid/liquid interface and the effect on emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172(1-3), 91-101. doi:10.1016/s0927-7757(00)00569-0Yang, S., Li, G., Saleh, A. S. M., Yang, H., Wang, N., Wang, P., … Xiao, Z. (2017). Functional Characteristics of Oleogel Prepared from Sunflower Oil with β-Sitosterol and Stearic Acid. Journal of the American Oil Chemists’ Society, 94(9), 1153-1164. doi:10.1007/s11746-017-3026-7Zetzl, A. K., Marangoni, A. G., & Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & Function, 3(3), 327. doi:10.1039/c2fo10202

    Fiber from fruit pomace: A review of applications in cereals-based products

    Full text link
    [EN] Fruit pomace is a by-product of the fruit processing industry composed of cell wall compounds, stems, and seeds of the fruit; after washing, drying, and milling, a material high in fiber and bioactive compounds is obtained. In bakery products, dried fruit pomace can be added to replace flour, sugar, or fat and thus reduce energy load while enhancing fiber and antioxidant contents. The high fiber content of fruit pomace, however, results in techno-functional interactions that affect physicochemical and sensory properties. In this article, different sources of fruit pomace are discussed along with their application in bread, brittle and soft bakery products, and extrudates.The funding, assured through the national partner organizations, is gratefully acknowledged: INIA in Spain, DEFRA in UK, and Federal Ministry of Education and Research via PTJ in Germany (grant 031B0004).Quiles Chuliá, MD.; Campbell, G.; Struck, S.; Rohm, H.; Hernando Hernando, MI. (2016). Fiber from fruit pomace: A review of applications in cereals-based products. Food Reviews International. 34(2):162-181. https://doi.org/10.1080/87559129.2016.1261299S162181342Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., … Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690Saura-Calixto, F. (1998). Antioxidant Dietary Fiber Product:  A New Concept and a Potential Food Ingredient. Journal of Agricultural and Food Chemistry, 46(10), 4303-4306. doi:10.1021/jf9803841Viebke, C., Al-Assaf, S., & Phillips, G. O. (2014). Food hydrocolloids and health claims. Bioactive Carbohydrates and Dietary Fibre, 4(2), 101-114. doi:10.1016/j.bcdf.2014.06.006Lattimer, J. M., & Haub, M. D. (2010). Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients, 2(12), 1266-1289. doi:10.3390/nu2121266Slavin, J. (2013). Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 5(4), 1417-1435. doi:10.3390/nu5041417Struck, S., Gundel, L., Zahn, S., & Rohm, H. (2016). Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT - Food Science and Technology, 65, 32-38. doi:10.1016/j.lwt.2015.07.053Grigelmo-Miguel, N., & Martı́n-Belloso, O. (1999). Comparison of Dietary Fibre from By-products of Processing Fruits and Greens and from Cereals. LWT - Food Science and Technology, 32(8), 503-508. doi:10.1006/fstl.1999.0587Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R., & Gao, Y. (2015). Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4(2), 250-258. doi:10.1016/j.bcab.2015.02.003Martí, N., Saura, D., Fuentes’, E., Lizama, V., García, E., Mico-Ballester, M. J., & Lorente, J. (2011). Fiber from tangerine juice industry. Industrial Crops and Products, 33(1), 94-98. doi:10.1016/j.indcrop.2010.09.004Iora, S. R. F., Maciel, G. M., Zielinski, A. A. F., da Silva, M. V., Pontes, P. V. de A., Haminiuk, C. W. I., & Granato, D. (2014). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62-69. doi:10.1111/ijfs.12583Yu, J., & Ahmedna, M. (2012). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221-237. doi:10.1111/j.1365-2621.2012.03197.xMilala, J., Kosmala, M., Sójka, M., Kołodziejczyk, K., Zbrzeźniak, M., & Markowski, J. (2011). Plum pomaces as a potential source of dietary fibre: composition and antioxidant properties. Journal of Food Science and Technology, 50(5), 1012-1017. doi:10.1007/s13197-011-0601-zMatias, M. de F. O., Oliveira, E. L. de, Gertrudes, E., & Magalhães, M. M. dos A. (2005). Use of fibres obtained from the cashew (Anacardium ocidentale, L) and guava (Psidium guayava) fruits for enrichment of food products. Brazilian Archives of Biology and Technology, 48(spe), 143-150. doi:10.1590/s1516-89132005000400018Larrauri, J. A., Rupérez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango Peels as a New Tropical Fibre: Preparation and Characterization. LWT - Food Science and Technology, 29(8), 729-733. doi:10.1006/fstl.1996.0113Martin-Cabrejas, M. A., Esteban, R. M., Lopez-Andreu, F. J., Waldron, K., & Selvendran, R. R. (1995). Dietary Fiber Content of Pear and Kiwi Pomaces. Journal of Agricultural and Food Chemistry, 43(3), 662-666. doi:10.1021/jf00051a020Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112Campbell, G.; Ross, M.; Motoi, L. Expansion capacity of bran-enriched doughs in different scales of laboratory mixers. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 323–336.Cauvain, S.; Chamberlain, N.; Collins, T.; Davies, J. The distribution of dietary fibre and baking quality among mill fractions of CBP flour. FMBRA Report No, 1983, 5.Galliard, T., & Collins, A. D. (1988). Effects of oxidising improvers, an emulsifier, fat and mixer atmosphere on the performance of wholemeal flour in the chorleywood bread process. Journal of Cereal Science, 8(2), 139-146. doi:10.1016/s0733-5210(88)80024-9Galliard, T., & Gallagher, D. M. (1988). The effects of wheat bran particle size and storage period on bran flavour and baking quality of bran/flour blends. Journal of Cereal Science, 8(2), 147-154. doi:10.1016/s0733-5210(88)80025-0Gan, Z., Ellis, P. R., Vaughan, J. G., & Galliard, T. (1989). Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread microstructure. Journal of Cereal Science, 10(2), 81-91. doi:10.1016/s0733-5210(89)80037-2Gan, Z., Galliard, T., Ellis, P. R., Angold, R. E., & Vaughan, J. G. (1992). Effect of the outer bran layers on the loaf volume of wheat bread. Journal of Cereal Science, 15(2), 151-163. doi:10.1016/s0733-5210(09)80066-0Wootton, M., & Shams-Ud-Din, M. (1986). The effects of aqueous extraction on the performance of wheat bran in bread. Journal of the Science of Food and Agriculture, 37(4), 387-390. doi:10.1002/jsfa.2740370409Zhang, D., & Moore, W. R. (1997). Effect of Wheat Bran Particle Size on Dough Rheological Properties. Journal of the Science of Food and Agriculture, 74(4), 490-496. doi:10.1002/(sici)1097-0010(199708)74:43.0.co;2-0Gan, Z., Ellis, P. R., & Schofield, J. D. (1995). Gas Cell Stabilisation and Gas Retention in Wheat Bread Dough. Journal of Cereal Science, 21(3), 215-230. doi:10.1006/jcrs.1995.0025Zhang, D., & Moore, W. R. (1999). Wheat bran particle size effects on bread baking performance and quality. Journal of the Science of Food and Agriculture, 79(6), 805-809. doi:10.1002/(sici)1097-0010(19990501)79:63.0.co;2-eCADDEN, A.-M. (1987). Comparative Effects of Particle Size Reduction on Physical Structure and Water Binding Properties of Several Plant Fibers. Journal of Food Science, 52(6), 1595-1599. doi:10.1111/j.1365-2621.1987.tb05886.xCADDEN, A.-M. (1988). Moisture Sorption Characteristics of Several Food Fibers. Journal of Food Science, 53(4), 1150-1155. doi:10.1111/j.1365-2621.1988.tb13550.xLaurikainen, T., Härkönen, H., Autio, K., & Poutanen, K. (1998). Effects of enzymes in fibre-enriched baking. Journal of the Science of Food and Agriculture, 76(2), 239-249. doi:10.1002/(sici)1097-0010(199802)76:23.0.co;2-lCampbell, G.; Ross, M.; Motoi, L. Bran in bread: Effects of particle size and level of wheat and oat bran on mixing, proving and baking. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 337–354.Sivam, A. S., Sun-Waterhouse, D., Quek, S., & Perera, C. O. (2010). Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. Journal of Food Science, 75(8), R163-R174. doi:10.1111/j.1750-3841.2010.01815.xAnil, M. (2007). Using of hazelnut testa as a source of dietary fiber in breadmaking. Journal of Food Engineering, 80(1), 61-67. doi:10.1016/j.jfoodeng.2006.05.003Chang, R.-C., Li, C.-Y., & Shiau, S.-Y. (2016). Physico-chemical and sensory properties of bread enriched with lemon pomace fiber. Czech Journal of Food Sciences, 33(No. 2), 180-185. doi:10.17221/496/2014-cjfsMASOODI, F. A., & CHAUHAN, G. S. (1998). USE OF APPLE POMACE AS A SOURCE OF DIETARY FIBER IN WHEAT BREAD. Journal of Food Processing and Preservation, 22(4), 255-263. doi:10.1111/j.1745-4549.1998.tb00349.xO’Shea, N., Rößle, C., Arendt, E., & Gallagher, E. (2015). Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chemistry, 166, 223-230. doi:10.1016/j.foodchem.2014.05.157Rosell, C. M., Santos, E., & Collar, C. (2005). Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study. European Food Research and Technology, 223(3), 333-340. doi:10.1007/s00217-005-0208-6Walker, R., Tseng, A., Cavender, G., Ross, A., & Zhao, Y. (2014). Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. Journal of Food Science, 79(9), S1811-S1822. doi:10.1111/1750-3841.12554Başman, A., & Köksel, H. (1999). Properties and Composition of Turkish Flat Bread (Bazlama) Supplemented with Barley Flour and Wheat Bran. Cereal Chemistry Journal, 76(4), 506-511. doi:10.1094/cchem.1999.76.4.506Waghmare, A. G., & Arya, S. S. (2013). Use of Fruit By-Products in the Preparation of HypoglycemicThepla: Indian Unleavened Vegetable Flat Bread. Journal of Food Processing and Preservation, 38(3), 1198-1206. doi:10.1111/jfpp.12080Barnes, P. J., & Lowy, G. D. A. (1986). The effect on baking quality of interaction between milling fractions during the storage of wholemeal flour. Journal of Cereal Science, 4(3), 225-232. doi:10.1016/s0733-5210(86)80024-8De Kock, S., Taylor, J., & Taylor, J. R. . (1999). Effect of Heat Treatment and Particle Size of Different Brans on Loaf Volume of Brown Bread. LWT - Food Science and Technology, 32(6), 349-356. doi:10.1006/fstl.1999.0564Nelles, E. M., Randall, P. G., & Taylor, J. R. N. (1998). Improvement of Brown Bread Quality by Prehydration Treatment and Cultivar Selection of Bran. Cereal Chemistry Journal, 75(4), 536-540. doi:10.1094/cchem.1998.75.4.536Doehlert, D. C., & Moore, W. R. (1997). Composition of Oat Bran and Flour Prepared by Three Different Mechanisms of Dry Milling. Cereal Chemistry Journal, 74(4), 403-406. doi:10.1094/cchem.1997.74.4.403Rocha Parra, A. F., Ribotta, P. D., & Ferrero, C. (2014). Apple pomace in gluten-free formulations: effect on rheology and product quality. International Journal of Food Science & Technology, 50(3), 682-690. doi:10.1111/ijfs.12662PATERAS, I. M. C., HOWELLS, K. F., & ROSENTHAL, A. J. (1994). Hot-stage Microscopy of Cake Batter Bubbles during Simulated Baking: Sucrose Replacement by Polydextrose. Journal of Food Science, 59(1), 168-170. doi:10.1111/j.1365-2621.1994.tb06925.xCauvain, S. P., & Young, L. S. (Eds.). (2006). Baked Products. doi:10.1002/9780470995907Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010Grigor, J. M., Brennan, C. S., Hutchings, S. C., & Rowlands, D. S. (2015). The sensory acceptance of fibre-enriched cereal foods: a meta-analysis. International Journal of Food Science & Technology, 51(1), 3-13. doi:10.1111/ijfs.13005WANG, H. J., & THOMAS, R. L. (1989). Direct Use of Apple Pomace in Bakery Products. Journal of Food Science, 54(3), 618-620. doi:10.1111/j.1365-2621.1989.tb04665.xMasoodi, F. A., Sharma, B., & Chauhan, G. S. (2002). Plant Foods for Human Nutrition, 57(2), 121-128. doi:10.1023/a:1015264032164Sudha, M. L., Indumathi, K., Sumanth, M. S., Rajarathnam, S., & Shashirekha, M. N. (2015). Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. Journal of Food Measurement and Characterization, 9(3), 382-388. doi:10.1007/s11694-015-9246-3Romero-Lopez, M. R., Osorio-Diaz, P., Bello-Perez, L. A., Tovar, J., & Bernardino-Nicanor, A. (2011). Fiber Concentrate from Orange (Citrus sinensis L.) Bagase: Characterization and Application as Bakery Product Ingredient. International Journal of Molecular Sciences, 12(4), 2174-2186. doi:10.3390/ijms12042174Mildner-Szkudlarz, S., Siger, A., Szwengiel, A., & Bajerska, J. (2015). Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chemistry, 172, 78-85. doi:10.1016/j.foodchem.2014.09.036Rodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012Rodríguez-García, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-zKhalil, A. H. (1998). Plant Foods for Human Nutrition, 52(4), 299-313. doi:10.1023/a:1008096031498Matsakidou, A., Blekas, G., & Paraskevopoulou, A. (2010). Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT - Food Science and Technology, 43(6), 949-957. doi:10.1016/j.lwt.2010.02.002Sikorski, Z.E.; Sikorska-Wiśniewska, G. The role of lipids in food quality. InImproving the fat content of foods. Williams, C., Buttriss, J., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp 213–235.Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science & Technology, 45(12), 2531-2537. doi:10.1111/j.1365-2621.2010.02444.xGrigelmo-Miguel, N., Carreras-Boladeras, E., & Martín-Belloso, O. (2001). Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 7(5), 425-431. doi:10.1177/108201301772660484Al-Sayed, H. M. A., & Ahmed, A. R. (2013). Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences, 58(1), 83-95. doi:10.1016/j.aoas.2013.01.012Kocer, D., Hicsasmaz, Z., Bayindirli, A., & Katnas, S. (2007). Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer. Journal of Food Engineering, 78(3), 953-964. doi:10.1016/j.jfoodeng.2005.11.034Hicsasmaz, Z., Yazgan, Y., Bozoglu, F., & Katnas, Z. (2003). Effect of polydextrose-substitution on the cell structure of the high-ratio cake system. LWT - Food Science and Technology, 36(4), 441-450. doi:10.1016/s0023-6438(03)00038-0Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1Rosell, C. ., Rojas, J. ., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81. doi:10.1016/s0268-005x(00)00054-0Mildner-Szkudlarz, S., Bajerska, J., Zawirska-Wojtasiak, R., & Górecka, D. (2012). White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. Journal of the Science of Food and Agriculture, 93(2), 389-395. doi:10.1002/jsfa.5774Srivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827-833. doi:10.3109/09637486.2014.937797Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., & Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101(14), 5414-5418. doi:10.1016/j.biortech.2010.02.022Larrea, M. ., Chang, Y. ., & Martı́nez Bustos, F. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chemistry, 89(2), 301-308. doi:10.1016/j.foodchem.2004.02.037Jung, J., Cavender, G., & Zhao, Y. (2014). Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 52(9), 5568-5578. doi:10.1007/s13197-014-1680-4Pasqualone, A., Bianco, A. M., Paradiso, V. M., Summo, C., Gambacorta, G., & Caponio, F. (2014). Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Research International, 65, 385-393. doi:10.1016/j.foodres.2014.07.014CARSON, K. J., COLLINS, J. L., & PENFIELD, M. P. (1994). Unrefined, Dried Apple Pomace as a Potential Food Ingredient. Journal of Food Science, 59(6), 1213-1215. doi:10.1111/j.1365-2621.1994.tb14679.xUysal, H., Bilgiçli, N., Elgün, A., İbanoğlu, Ş., Herken, E. N., & Kürşat Demir, M. (2007). Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. Journal of Food Engineering, 78(3), 1074-1078. doi:10.1016/j.jfoodeng.2005.12.019Özboy-Özbaş, Ö., Seker, I. T., & Gökbulut, I. (2010). Effects of resistant starch, apricot kernel flour, and fiber-rich fruit powders on low-fat cookie quality. Food Science and Biotechnology, 19(4), 979-986. doi:10.1007/s10068-010-0137-4Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science & Technology, 44(6), 1263-1271. doi:10.1111/j.1365-2621.2009.01956.xKarkle, E. L., Keller, L., Dogan, H., & Alavi, S. (2012). Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. Journal of Food Engineering, 108(1), 171-182. doi:10.1016/j.jfoodeng.2011.06.020Mäkilä, L., Laaksonen, O., Ramos Diaz, J. M., Vahvaselkä, M., Myllymäki, O., Lehtomäki, I., … Kallio, H. (2014). Exploiting blackcurrant juice press residue in extruded snacks. LWT - Food Science and Technology, 57(2), 618-627. doi:10.1016/j.lwt.2014.02.005Yağcı, S., & Göğüş, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering, 86(1), 122-132. doi:10.1016/j.jfoodeng.2007.09.018Paraman, I., Sharif, M. K., Supriyadi, S., & Rizvi, S. S. H. (2015). Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing, 96, 78-85. doi:10.1016/j.fbp.2015.07.003Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46(1), 10-21. doi:10.1016/j.foodres.2011.11.003Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of Extrusion Cooking on Functional Properties andin vitroStarch Digestibility of Barley-Based Extrudates from Fruit and Vegetable By-Products. Journal of Food Science, 74(2), E77-E86. doi:10.1111/j.1750-3841.2009.01051.xAltan, A., McCarthy, K. L., & Maskan, M. (2008). Twin-screw extrusion of barley–grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24-32. doi:10.1016/j.jfoodeng.2008.03.025Drożdż, W., Tomaszewska-Ciosk, E., Zdybel, E., Boruczkowska, H., Boruczkowski, T., & Regiec, P. (2014). Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Polish Journal of Chemical Technology, 16(3), 7-11. doi:10.2478/pjct-2014-0042GUMUL, D., ZIOBRO, R., ZIĘBA, T., & RÓJ, E. (2011). THE INFLUENCE OF ADDITION OF DEFATTED BLACKCURRANT SEEDS ON PRO-HEALTH CONSTITUENTS AND TEXTURE OF CEREAL EXTRUDATES. Journal of Food Quality, 34(6), 395-402. doi:10.1111/j.1745-4557.2011.00418.xKhanal, R. C., Howard, L. R., Brownmiller, C. R., & Prior, R. L. (2009). Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. Journal of Food Science, 74(2), H52-H58. doi:10.1111/j.1750-3841.2009.01063.xKhanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin Content of Grape Seed and Pomace, and Total Anthocyanin Content of Grape Pomace as Affected by Extrusion Processing. Journal of Food Science, 74(6), H174-H182. doi:10.1111/j.1750-3841.2009.01221.xHirth, M., Lei

    Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion

    Full text link
    [EN] The first aim of this study was to observe the effect of adding dairy proteins and reducing the cream content in order to obtain healthier dairy desserts for use in weight management. The extra-whey protein low-cream sample had the densest, firmest matrix, which is related to increased satiety. The second aim was to investigate the in vitro gastric digestion behavior of whey and casein proteins in a heat treated semisolid real food. The extra-casein protein sample matrix broke down more slowly than the others because the caseins clotted at the gastric pH. Despite being heated, the whey proteins in the panna cottas were more resistant to pepsin digestion than caseins; this is related with a higher satiety capacity. These findings suggest that the combination of reducing fat content (to obtain a reduced energy density product) and adding whey protein (to increase satiety capacity) allows obtaining dairy desserts for weight management.This work was supported by the Spanish Ministry of the Economy and Competitiveness (AGL2012-36753-C02) and by EU FEDER funds.Borreani, JAA.; Llorca Martínez, ME.; Quiles Chuliá, MD.; Hernando Hernando, MI. (2017). Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion. Food Chemistry. 220:137-144. https://doi.org/10.1016/j.foodchem.2016.09.202S13714422

    New hydrocolloid-based emulsions for replacing fat in panna cottas: a structural and sensory study

    Full text link
    [EN] BACKGROUND: Dairy desserts are popular traditional products, but because of their high calorie or fat content, they can be unsuitable for people who have certain dietary requirements. The aim of this study was to design panna cottas with similar organoleptic and textural properties to the traditional ones but with a lower fat content, by replacing part of the cream with new emulsions prepared with hydrocolloids (cellulose ethers), namely methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC). RESULTS: Incorporating the MC and HPMC emulsions modified the textural properties (firmness and stiffness) of the panna cottas. Regarding the sensory results, the panna cottas prepared with the MC and HPMC emulsions were considered lumpy and soft respectively. CONCLUSION: Considering the results as a whole, the cellulose type and the amount of cream are factors to take into account. Although the texture and taste of the control panna cotta are better than those of the panna cottas prepared with the MC and HPMC emulsions, it is possible to replace 75% of the cream in traditional panna cottas with HPMC emulsion and obtain good consumer acceptance and purchase intention. The panna cottas with 75% substitution by HPMC emulsion were described as creamy, with smooth appearance and moist mouth feel.The authors are grateful to the Spanish Ministry of the Economy and Competitiveness for financial support (AGL2015-68923-C2 (MINECO/FEDER)) and gratefully acknowledge the financial support of EU FEDER funds. They would also like to thank Mary Georgina Hardinge for translating and correcting the English of the manuscript.Borreani, JAA.; Hernando Hernando, MI.; Salvador Alcaraz, A.; Quiles Chuliá, MD. (2017). New hydrocolloid-based emulsions for replacing fat in panna cottas: a structural and sensory study. Journal of the Science of Food and Agriculture. 97(14):4961-4968. https://doi.org/10.1002/jsfa.8373S49614968971
    corecore