17 research outputs found

    Chronic lymphocytic leukemia patients with IGH translocations are characterized by a distinct genetic landscape with prognostic implications

    Get PDF
    Chromosome 14q32 rearrangements/translocations involving the immunoglobulin heavy chain (IGH) are rarely detected in chronic lymphocytic leukemia (CLL). The prognostic significance of the IGH translocation is controversial and its mutational profile remains unknown. Here, we present for the first time a comprehensive next-generation sequencing (NGS) analysis of 46 CLL patients with IGH rearrangement (IGHR-CLLs) and we demonstrate that IGHR-CLLs have a distinct mutational profile with recurrent mutations in NOTCH1, IGLL5, POT1, BCL2, FBXW7, ZMYM3, MGA, BRAF and HIST1H1E genes. Interestingly, BCL2 and FBXW7 mutations were significantly associated with this subgroup and almost half of BCL2, IGLL5 and HISTH1E mutations reported were previously identified in non-Hodgkin lymphomas. Notably, IGH/BCL2 rearrangements were associated with a lower mutation frequency and carried BCL2 and IGLL5 mutations, while the other IGHR-CLLs had mutations in genes related to poor prognosis (NOTCH1, SF3B1 and TP53) and shorter time to first treatment (TFT). Moreover, IGHR-CLLs patients showed a shorter TFT than CLL patients carrying 13q-, normal fluorescence in situ hybridization (FISH) and +12 CLL, being this prognosis particularly poor when NOTCH1, SF3B1, TP53, BIRC3 and BRAF were also mutated. The presence of these mutations not only was an independent risk factor within IGHR-CLLs, but also refined the prognosis of low-risk cytogenetic patients (13q-/normal FISH). Hence, our study demonstrates that IGHR-CLLs have a distinct mutational profile from the majority of CLLs and highlights the relevance of incorporating NGS and the status of IGH by FISH analysis to refine the risk-stratification CLL model

    Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia

    Get PDF
    © 2021 The Authors.[Background]: Several genetic alterations have been identified as driver events in chronic lymphocytic leukemia (CLL) pathogenesis and oncogenic evolution. Concurrent driver alterations usually coexist within the same tumoral clone, but how the cooperation of multiple genomic abnormalities contributes to disease progression remains poorly understood. Specifically, the biological and clinical consequences of concurrent high-risk alterations such as del(11q)/ATM-mutations and del(17p)/TP53-mutations have not been established.[Methods]: We integrated next-generation sequencing (NGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 techniques to characterize the in vitro and in vivo effects of concurrent monoallelic or biallelic ATM and/or TP53 alterations in CLL prognosis, clonal evolution, and therapy response.[Results]: Targeted sequencing analysis of the co-occurrence of high-risk alterations in 271 CLLs revealed that biallelic inactivation of both ATM and TP53 was mutually exclusive, whereas monoallelic del(11q) and TP53 alterations significantly co-occurred in a subset of CLL patients with a highly adverse clinical outcome. We determined the biological effects of combined del(11q), ATM and/or TP53 mutations in CRISPR/Cas9-edited CLL cell lines. Our results showed that the combination of monoallelic del(11q) and TP53 mutations in CLL cells led to a clonal advantage in vitro and in in vivo clonal competition experiments, whereas CLL cells harboring biallelic ATM and TP53 loss failed to compete in in vivo xenotransplants. Furthermore, we demonstrated that CLL cell lines harboring del(11q) and TP53 mutations show only partial responses to B cell receptor signaling inhibitors, but may potentially benefit from ATR inhibition.[Conclusions]: Our work highlights that combined monoallelic del(11q) and TP53 alterations coordinately contribute to clonal advantage and shorter overall survival in CLL.Spanish Fondo de Investigaciones Sanitarias, Grant/Award Numbers: PI15/01471, PI18/01500); Fundación Memoria Don Samuel Solórzano Barruso, Grant/Award Number: RD12/0036/006

    TRAF3 alterations are frequent in del-3′IGH chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features

    Get PDF
    Interstitial 14q32 deletions involving IGH gene are infrequent events in chronic lymphocytic leukemia (CLL), affecting less than 5% of patients. To date, little is known about their clinical impact and molecular underpinnings, and its mutational landscape is currently unknown. In this work, a total of 871 CLLs were tested for the IGH break-apart probe, and 54 (6.2%) had a 300 kb deletion of 3′IGH (del-3′IGH CLLs), which contributed to a shorter time to first treatment (TFT). The mutational analysis by next-generation sequencing of 317 untreated CLLs (54 del-3′IGH and 263 as the control group) showed high mutational frequencies of NOTCH1 (30%), ATM (20%), genes involved in the RAS signaling pathway (BRAF, KRAS, NRAS, and MAP2K1) (15%), and TRAF3 (13%) within del-3′IGH CLLs. Notably, the incidence of TRAF3 mutations was significantly higher in del-3′IGH CLLs than in the control group (p < .001). Copy number analysis also revealed that TRAF3 loss was highly enriched in CLLs with 14q deletion (p < .001), indicating a complete biallelic inactivation of this gene through deletion and mutation. Interestingly, the presence of mutations in the aforementioned genes negatively refined the prognosis of del-3′IGH CLLs in terms of overall survival (NOTCH1, ATM, and RAS signaling pathway genes) and TFT (TRAF3). Furthermore, TRAF3 biallelic inactivation constituted an independent risk factor for TFT in the entire CLL cohort. Altogether, our work demonstrates the distinct genetic landscape of del-3′IGH CLL with multiple molecular pathways affected, characterized by a TRAF3 biallelic inactivation that contributes to a marked poor outcome in this subgroup of patients.Funding information: Universidad de Salamanca; Fundación Española de Hematología y Hemoterapia (FEHH); Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Grant/Award Number: CB16/12/00233; Red Temática de Investigación Cooperativa en Cáncer (RTICC); “Fundación Memoria Don Samuel Solórzano Barruso”: FS/33–2020, Grant/Award Number: RD12/0036/0069; “Gerencia Regional de Salud, SACYL”:, Grant/Award Numbers: GRS2385/A/21, GRS2140/A/20; Consejería de Educación, Junta de Castilla y León, Grant/Award Number: SA118P20; European Regional Development Fund and Instituto de Salud Carlos III, Grant/Award Numbers: CD19/00222, FI19/00191; Spanish Fondo de Investigaciones Sanitarias, Grant/Award Numbers: PI21/00983, PI18/0150

    Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression

    Get PDF
    © The Author(s) 2021.BIRC3 is monoallelically deleted in up to 80% of chronic lymphocytic leukemia (CLL) cases harboring del(11q). In addition, truncating mutations in the remaining allele of this gene can lead to BIRC3 biallelic inactivation, which has been shown to be a marker for reduced survival in CLL. Nevertheless, the biological mechanisms by which these lesions could contribute to del(11q) CLL pathogenesis and progression are partially unexplored. We implemented the CRISPR/Cas9-editing system to generate isogenic CLL cell lines harboring del(11q) and/or BIRC3 mutations, modeling monoallelic and biallelic BIRC3 loss. Our results reveal that monoallelic BIRC3 deletion in del(11q) cells promotes non-canonical NF-κB signaling activation via RelB-p52 nuclear translocation, being these effects allelic dose-dependent and therefore further enhanced in del(11q) cells with biallelic BIRC3 loss. Moreover, we demonstrate ex vivo in primary cells that del(11q) cases including BIRC3 within their deleted region show evidence of non-canonical NF-κB activation which correlates with high BCL2 levels and enhanced sensitivity to venetoclax. Furthermore, our results show that BIRC3 mutations in del(11q) cells promote clonal advantage in vitro and accelerate leukemic progression in an in vivo xenograft model. Altogether, this work highlights the biological bases underlying disease progression of del(11q) CLL patients harboring BIRC3 deletion and mutation.This work was supported by grants from the Spanish Fondo de Investigaciones Sanitarias PI15/01471, PI18/01500, Instituto de Salud Carlos III (ISCIII), European Regional Development Fund (ERDF) “Una manera de hacer Europa”, “Consejería de Educación, Junta de Castilla y León” (SA271P18), “Proyectos de Investigación del SACYL”, Spain GRS 2062/A/19, GRS 1847/A/18, GRS1653/A17,“Fundación Memoria Don Samuel Solórzano Barruso” (FS/23-2018), by grants (RD12/0036/0069) from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Universidad de Salamanca (Programa XIII), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC CB16/12/00233) and SYNtherapy “Synthetic Lethality for Personalized Therapy-based Stratification In Acute Leukemia” (ERAPERMED2018-275); ISCIII (AC18/00093), co-funded by ERDF/ESF, “Investing in your future”. M.Q.Á. and A.E.R.V. are supported with a research grant by FEHH (“Fundación Española de Hematología y Hemoterapia”); M.H.S. holds a Sara Borrell postdoctoral contract (CD19/00222) from the Instituto de Salud Carlos III (ISCIII). C.P.C. was supported by an “Ayuda predoctoral en Oncología” (AECC) and is a recipient of a PFIS grant (FI19/00191) from Instituto de Salud Carlos III; PFIS grant and Sara Borrell postdoctoral contrat are co-founded by Fondo Social Europeo (FSE) “El Fondo Social Europeo invierte en tu futuro”; J.L.O. and R.B.S. are supported by a grant from the University of Salamanca (“Contrato postdoctoral programa II”)

    CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition

    Get PDF
    The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.This work was supported by grants from the Spanish Fondo de Investigaciones Sanitarias PI15/01471, PI18/01500, Instituto de Salud Carlos III (ISCIII), European Regional Development Fund (ERDF) “Una manera de hacer Europa”, “Consejería de Educación, Junta de Castilla y León” (SA271P18), “Proyectos de Investigación del SACYL”, Spain GRS 1847/A/18, GRS1653/A17,“Fundación Memoria Don Samuel Solórzano Barruso” (FS/23-2018), by grants (RD12/0036/0069) from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC CB16/12/00233) and SYNtherapy “Synthetic Lethality for Personalized Therapy-based Stratification In Acute Leukemia” (ERAPERMED2018-275); ISCIII (AC18/00093). MQÁ is fully supported by an “Ayuda predoctoral de la Junta de Castilla y León” by the Fondo Social Europeo (JCYL-EDU/529/2017 PhD scholarship); MHS was supported by a grant from FEHH/Janssen (“Sociedad Española de Hematología y Hemoterapia”) and now holds a Sara Borrell postdoctoral contract (CD19/00222) from Instituto de Salud Carlos III (ISCIII), co-funded by Fondo Social Europeo (FSE) “El Fondo Social Europeo invierte en tu futuro”; AERV is supported with a research grant by FEHH (“Fundación Española de Hematología y Hemoterapia”); MG is supported by a Marie Curie Action International Outgoing Fellowship (PIOF-2013-624924); EtH is a Special Fellow of the Leukemia and Lymphoma Society (LLS) and a Scholar of the American Society of Hematology (ASH) and JLO is supported by a grant from the University of Salamanca (“Contrato postdoctoral programa II”).Peer reviewe

    La secuenciación masiva dirigida revela que los pacientes con leucemia linfática crónica y reordenamiento de igh presentan mutaciones en los genes POT1, EGR2, BRAF, IGLL5 Y MGA

    Get PDF
    Abstract [CO-081] Introducción: La traslocación de la región 14q32, que contiene el gen de la cadena pesada de las inmunoglobulinas (IGH), aparece en el 4-9% de pacientes de leucemia linfática crónica(LLC). Aunque algunos estudios le atribuyen a este subgrupo un pronóstico desfavorable, sus características clínicas y biológicas no se conocen en profundidad. La secuenciación masiva (NGS) ha mejorado notablemente el conocimiento de la heterogeneidad genética y clínica de la LLC, por lo que nos planteamos el análisis del perfil mutacional de estos pacientes para definir mejor su pronóstico. Métodos: Se analizaron 231 pacientes de LLC, de los cuales 42 presentaban traslocación de 14q32. En todos los casos se disponía de datos clínicos y FISH. Se diseñó un panel personalizado de 54 genes, seleccionados por su frecuencia e implicación en la patogenia de la enfermedad. La secuenciación se realizó en la plataforma NextSeq(Illumina). El panel cubre el 97% de las regiones (>100X) con una profundidad de 606 lecturas/base, permitiendo la detección de variantes presentes en >3% de las células..

    High expression level of ROR1 and ROR1-signaling associates with venetoclax resistance in chronic lymphocytic leukemia

    No full text
    Although the BH3-mimetic venetoclax is highly cytotoxic for chronic lymphocytic leukemia (CLL) cells, some patients with CLL fail to clear minimal residual disease (MRD). We examined the CLL cells of seven such patients (CLL1-7) and found each had high-level expression of ROR1. By examining the CLL cells from such patients prior to therapy at SC1 and then more than 1 year later (Sample Collection 2 (SC2)), when they had progressive increases in MRD despite continued venetoclax therapy, we found the levels of ROR1 expressed on CLL cells at SC2 were significantly higher than that on CLL cells collected at SC1. At SC2, we also observed upregulation of genes induced by Wnt5a-induced ROR1 signaling, including BCL2L1. Transduction of the CLL-cell-line MEC1 to express ROR1 enhanced expression of target genes induced by ROR1-signaling, increased expression of BCL-XL, and enhanced resistance to venetoclax, even in MEC1 made to express mutant forms of BCL2, which are associated with venetoclax resistance. Treatment of primary CLL cells with Wnt5a also increased their resistance to venetoclax, an effect that could be inhibited by the anti-ROR1 mAb (UC-961, zilovertamab). Collectively, these studies indicate that Wnt5a-induced ROR1-signaling can enhance resistance to venetoclax therapy.This work was supported by the University of California San Diego Foundation Blood Cancer Research Fund (BCRF), and in part by the National Institutes of Health, National Cancer Institute (R01-CA236361) (T.J.K.). M.Q.A. is a recipient of a fellowship from the Spanish Society of Hematology (FEHH), and is supported by a 2020 Research Mobility Grant from the European Hematology Association (EHA). The RNA sequencing was conducted at the IGM Genomics Center, University of California, San Diego, La Jolla, CA (Grant No. P30CA023100). This publication includes data generated at the UC San Diego IGM Genomics Center utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929)

    The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia

    No full text
    CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line. CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.This work was supported in part by a grant from the Consejería de Educación, Junta de Castilla y León, Fondos FEDER (SA085U16 to JMHR and JCYL-EDU/346/2013 PhD scholarship to MHS), the ISCIII-FEDER Spanish Cancer Network (RD12/0036/0069) and the Fondo de Investigaciones Sanitarias (FIS) of the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF) “Una manera de hacer Europa” (grant PI15/01471).Peer Reviewe

    The evolving landscape of chronic lymphocytic leukemia on diagnosis, prognosis and treatment

    No full text
    © 2021 by the authors.The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.This research was funded by grants from the Spanish Fondo de Investigaciones Sanitarias PI15/01471 and PI18/01500, Instituto de Salud Carlos III (ISCIII), European Regional Development Fund (ERDF) “Una manera de hacer Europa”, “Consejería de Educación, Junta de Castilla y León” (SA271P18 and SA118P20), “Proyectos de Investigación del SACYL”, Spain GRS1847/A/18 and GRS1653/A17, “Fundación Memoria Don Samuel Solórzano Barruso” (FS/23-2018, FS/33-2020), “Programa de financiación de grupos de investigación” (PIC2-2020-25) and by grants (RD12/0036/0069) from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC CB16/12/00233) and SYNtherapy “Synthetic Lethality for Personalized Therapy-based Stratification In Acute Leukemia” (ERAPERMED2018-275); ISCIII (AC18/00093). M.Q.-Á. was fully supported by an “Ayuda predoctoral de la Junta de Castilla y León” by Fondo Social Europeo (JCYL-EDU/529/2017 PhD scholarship) and now holds a FEHH (“Fundación Española de Hematología y Hemoterapia”); C.P.-C. was supported by an “Ayuda predoctoral en Oncología” (AECC) and is a recipient of a PFIS grant (FI19/00191) from Instituto de Salud Carlos III; M.H.-S. was supported by a grant from FEHH/Janssen (“Sociedad Española de Hematología y Hemoterapia”) and now holds a Sara Borrell post-doctoral contract (CD19/00222) from the Instituto de Salud Carlos III (ISCIII). The PFIS grant and Sara Borrell posdoctoral contract are co-founded by Fondo Social Europeo (FSE) “El Fondo Social Europeo invierte en tu futuro”; A.E.R.-V. was supported with a research grant by FEHH (“Fundación Española de Hematología y Hemoterapia”)
    corecore