942 research outputs found

    The Higgs as a Supersymmetric Partner, with a New Interpretation of Yukawa Couplings

    Get PDF
    An unconventional version of supersymmetry leads to the following highly testable predictions: (1) The Higgs boson has an R-parity of -1, so it can only be produced as one member of a pair of superpartners. (2) The only superpartners are scalar bosons, so neutralinos etc. do not exist. (3) The most likely candidate for cold dark matter is therefore a sneutrino. (4) The Higgs and other bosonic superpartners have an unconventional equation of motion. These predictions are associated with new interpretations of Yukawa couplings, supersymmetry, gauge fields, and Lorentz invariance.Comment: 4 pages, proceedings of DPF2000 Meeting of APS Division of Particles and Fields (August, 2000, Ohio State University

    The coupling constants for an electroweak model with a SU(4)PSSU(4)EWSU(4)_{PS} \otimes SU(4)_{EW} unification symmetry

    Full text link
    We introduce the sequence of spontaneous symmetry breaking of a coupling between Pati-Salam and electroweak symmetries SU(4)PSSU(4)EWSU(4)_{PS} \otimes SU(4)_{EW} in order to establish a mathematically consistent relation among the coupling constants at grand unification energy scale. With the values of baryon minus lepton quantum numbers of known quarks and leptons, by including right-handed neutrinos, we can find the mixing angle relations at different energy levels up to the electromagnetic U(1)EMU(1)_{EM} scale.Comment: 8 page

    Unusual High-Energy Phenomenology of Lorentz-Invariant Noncommutative Field Theories

    Full text link
    It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective theory with Lorentz invariance intact. Previous applications of this approach, in particular to a specific construction of noncommutative QED, have been studied only in a low-momentum approximation. Here we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of noncommutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied at a future linear collider. We also give an example of scattering via a four-fermion operator in which the noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring any other new physics in the ultraviolet.Comment: 24 pages LaTeX, 4 eps figures (v2: reference added, v3: minor clarifications

    Prospects for the Bc Studies at LHCb

    Get PDF
    We discuss the motivations and perspectives for the studies of the mesons of the (bc) family at LHCb. The description of production and decays at LHC energies is given in details. The event yields, detection efficiencies, and background conditions for several Bc decay modes at LHCb are estimated.Comment: 20 pages, 5 eps-figure

    Quarkonium Wave Functions at the Origin

    Get PDF
    We tabulate values of the radial Schr\"{o}dinger wave function or its first nonvanishing derivative at zero quark-antiquark separation, for ccˉc\bar{c}, cbˉc\bar{b}, and bbˉb\bar{b} levels that lie below, or just above, flavor threshold. These quantities are essential inputs for evaluating production cross sections for quarkonium states.Comment: 9 pages, RevTeX, no figure

    Gauge invariance and non-constant gauge couplings

    Full text link
    It is shown that space-time dependent gauge couplings do not completely break gauge invariance. We demonstrate this in various gauge theories.Comment: 18 page

    Scalar radius of the pion in the Kroll-Lee-Zumino renormalizable theory

    Full text link
    The Kroll-Lee-Zumino renormalizable Abelian quantum field theory of pions and a massive rho-meson is used to calculate the scalar radius of the pion at next to leading (one loop) order in perturbation theory. Due to renormalizability, this determination involves no free parameters. The result is s=0.40fm2_s = 0.40 {fm}^2. This value gives for ˉ4\bar{\ell}_4, the low energy constant of chiral perturbation theory, ˉ4=3.4\bar{\ell}_4 = 3.4, and Fπ/F=1.05F_\pi/F = 1.05, where F is the pion decay constant in the chiral limit. Given the level of accuracy in the masses and the ρππ\rho\pi\pi coupling, the only sizable uncertainty in this result is due to the (uncalculated) NNLO contribution

    Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Full text link
    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right--symmetric SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group. In a fourth class of models, built on SU(4)_{PS} x SU(2)_L x SU(2)_R gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.Comment: 20 pages, no figures, uses RevTeX; typos correcte

    Lepto-mesons, Leptoquarkonium and the QCD Potential

    Get PDF
    We consider bound states of heavy leptoquark-antiquark pairs (lepto-mesons) as well as leptoquark-antileptoquark pairs (leptoquarkonium). Unlike the situation for top quarks, leptoquarks (if they exist) may live long enough for these hadrons to form. We study the spectra and decay widths of these states in the context of a nonrelativistic potential model which matches the recently calculated two-loop QCD potential at short distances to a successful phenomenological quarkonium potential at intermediate distances. We also compute the expected number of events for these states at future colliders.Comment: 12 pages, 1 figure, 3 tables, plain TeX, requires harvmac. References updated and minor clarifications made. To appear in Physics Letters

    Spacings of Quarkonium Levels with the Same Principal Quantum Number

    Get PDF
    The spacings between bound-state levels of the Schr\"odinger equation with the same principal quantum number NN but orbital angular momenta \ell differing by unity are found to be nearly equal for a wide range of power potentials V=λrνV = \lambda r^\nu, with ENF(ν,N)G(ν,N)E_{N \ell} \approx F(\nu, N) - G(\nu,N) \ell. Semiclassical approximations are in accord with this behavior. The result is applied to estimates of masses for quarkonium levels which have not yet been observed, including the 2P ccˉc \bar c states and the 1D bbˉb \bar b states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process using psfig.sty
    corecore