116 research outputs found

    CFD Simulation of PMM Motion in Shallow Water for the DTC Container Ship

    Get PDF
    International audienceThis paper is devoted to the validation exercises with the ISIS-CFD code conducted for the test cases proposed for the MASHCON conference. CFD simulations have been performed for the 4 different pure yaw and pure sway test cases under shallow water condition. Predicted results are compared with the measurement data provided by FHR

    Bank effects for KVLCC2

    Get PDF
    A study is presented on ship–bank interaction effects in which viscous-flow solvers are used to predict the hydrodynamic forces and moments on the ship. The ship under consideration is the KRISO Very Large Crude Carrier (KVLCC2). For this hull form, Flanders Hydraulics Research (FHR) has conducted shallow water model tests in their towing tank equipped with surface-piercing banks and a vertical quay wall. The forces and moments on the KVLCC2 model were obtained for various water depths and lateral distances to the banks. Additionally, the wave elevation was measured between the quay wall and the ship model. In this study, two different CFD codes are used to predict the loads on the KVLCC2 as a function of the water depth and lateral position in the channel. The effect of propeller suction and free surface modelling on the results is quantified. Furthermore, comparisons will be made with CFD results from literature and potential flow computations to highlight the benefits of each approach. It will be shown that with careful setup of the computations, reliable predictions of the ship–bank interaction effects can be obtained

    Mission-based hull-form and propeller optimization of a transom stern destroyer for best performance in the sea environment

    Get PDF
    An overview is presented of the activities conducted within the NATO STO Task Group AVT-204 to “Assess the Ability to Optimize Hull Forms of Sea Vehicles for the Best Per- formance in a Sea Environment.” The objective is the development of a greater understanding of the potential and limitations of the hydrodynamic optimization tools. These include low- and high-fidelity solvers, automatic shape modification methods, and multi-objective optimiza- tion algorithms, and are limited here to a deterministic application. The approach includes simulation-based design optimization methods from different research teams. Analysis tools include potential flow and Reynolds-averaged Navier-Stokes equation solvers. Design modifica- tion tools include global modification functions, control point based methods, and parametric modelling by hull sections and basic curves. Optimization algorithms include particle swarm optimization, sequential quadratic programming, genetic and evolutionary algorithms. The ap- plication is the hull-form and propeller optimization of the DTMB 5415 model for significant conditions, based on actual missions at sea

    Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics

    Get PDF
    The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the water surface differ widely. Many of these highly different methods are being used with success. We review three of these methods, by describing in detail their implementation in one particular code that is being used in industrial practice. The descriptions concern the principle of the method, numerical details, and the method’s strengths and limitations. For each code, examples are given of its use. Finally, the methods are compared to determine the best field of application for each. The following surface descretisation methods are reviewed. First, surface fitting/mesh deformation in PARNASSOS, developed by MARIN; the description focuses on the efficient steady-state solution method of this code. Then surface capturing with Volume-of-Fluid in ISIS-CFD, developed by CNRS/Ecole Centrale de Nantes; the main topic of this review are the compressive flux discretisation schemes for the volume fraction that are used in this code. And fi- nally, the Level Set method in SURF, developed by NMRI; this description contains a modified formulation of the Level Set method that is optimised for ship flow computation

    Modelling capsizing icebergs in the open ocean

    Get PDF
    At near-grounded glacier termini, calving can lead to the capsize of kilometre-scale (i.e. gigatons) unstable icebergs. The transient contact force applied by the capsizing iceberg on the glacier front generates seismic waves that propagate over teleseismic distances. The inversion of this seismic signal is of great interest to get insight into actual and past capsize dynamics. However, the iceberg size, which is of interest for geophysical and climatic studies, cannot be recovered from the seismic amplitude alone. This is because the capsize is a complex process involving interactions between the iceberg, the glacier and the surrounding water. This paper presents a first step towards the construction of a complete model, and is focused on the capsize in the open ocean without glacier front nor ice-mĂ©lange. The capsize dynamics of an iceberg in the open ocean is captured by computational fluid dynamics (CFD) simulations, which allows assessing the complexity of the fluid motion around a capsizing iceberg and how far the ocean is affected by iceberg rotation. Expressing the results in terms of appropriate dimensionless variables, we show that laboratory scale and field scale capsizes can be directly compared. The capsize dynamics is found to be highly sensitive to the iceberg aspect ratio and to the water and ice densities. However, dealing at the same time with the fluid dynamics and the contact between the iceberg and the deformable glacier front requires highly complex coupling that often goes beyond actual capabilities of fluid-structure interaction softwares. Therefore, we developed a semi-analytical simplified fluid-structure model (SAFIM) that can be implemented in solid mechanics computations dealing with contact dynamics of deformable solids. This model accounts for hydrodynamic forces through calibrated drag and added-mass effects, and is calibrated against the reference CFD simulations. We show that SAFIM significantly improves the accuracy of the iceberg motion compared with existing simplified models. Various types of drag forces are discussed. The one that provides the best results is an integrated pressure-drag proportional to the square of the normal local velocity at the iceberg’s surface, with the drag coefficient depending linearly on the iceberg’s aspect ratio. A new formulation based on simplified added-masses or computed added-mass proposed in the literature, is also discussed. We study in particular the change of hydrodynamic-induced forces and moments acting on the capsizing iceberg. The error of the simulated horizontal force ranges between 5 and 25 per cent for different aspect ratios. The added-masses affect the initiation period of the capsize, the duration of the whole capsize being better simulated when added-masses are accounted for. The drag force mainly affects the amplitude of the fluid forces and this amplitude is best predicted without added-masses.he authors acknowledge funding from ANR (contract ANR-11- BS01-0016 LANDQUAKES), ERC (contract ERC-CG-2013-PE10-617472 SLIDEQUAKES), DGA-MRIS and IPGP - Univer-sitÂŽe de Paris ED560 (STEP’UP), which has made this work possible. The authors acknowledge Justin Burton for providing us with the data from laboratory experiments. The authors are also very grateful to Francžois Charru, Emmanuel de Langre and Evgeniy A. Podolskiy for fruitful discussions, and the reviewers (Jason M. Amundson and Bradley P. Lipovsky) for helpful comments

    DĂ©fi de validation de logiciel. 2-Dimensional Curved Square Duct Flow

    No full text
    International audienc
    • 

    corecore