10 research outputs found

    A mild biomass pretreatment using gamma-valerolactone for concentrated sugar production

    Get PDF
    Here we report that gamma-valerolactone (GVL), a biomass-derived solvent, can be used to facilitate the mild pretreatment of lignocellulosic biomass. An 80% GVL, 20% water solvent system was used to pretreat hardwood at the mild temperature of 120 degrees C with an acid loading of 75 mM H2SO4. Up to 80% of original lignin was removed with 96-99% of original cellulose retained in the pretreated substrates. The use of a mild temperature and low acid concentrations caused negligible degradation of sugars. Up to 99% of the original glucan and 96% of the original xylan could be recovered after pretreatment. The pretreated substrate was quantitatively converted to sugars (99% and 100% total glucose and xylose yield) with an enzyme loading of 15 FPU g(-1) glucan. These digestibilities were three times higher than those obtained when using other organic solvents such as tetrahydrofuran or ethanol, and 20 times higher than when pure water was used during pretreatment. Over 99.5% of GVL could be recovered by liquid-CO2 extraction of the pretreated slurries while removing less than 1% of the sugars. This approach produced pretreatment slurries that could easily undergo high-solids (30% w/v) enzymatic hydrolysis without any substrate washing or drying. We obtained glucose and xylose yields of up to 90% and 97%, respectively, and generated sugar streams with sugar concentrations up to 182 g L-1

    Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization

    Get PDF
    Polysaccharide depolymerization is an essential step for valorizing lignocellulosic biomass. In inexpensive systems such as pure water or dilute acid mixtures, carbohydrate monomer degradation rates exceed hemicellulose—and especially cellulose—depolymerization rates at most easily accessible temperatures, limiting sugar yields. Here, we use a reversible stabilization of xylose and glucose by acetal formation with formaldehyde to alter this kinetic paradigm, preventing sugar dehydration to furans and their subsequent degradation. During a harsh organosolv pretreatment in the presence of formaldehyde, over 90% of xylan in beech wood was recovered as diformylxylose (compared to 16% xylose recovery without formaldehyde). The subsequent depolymerization of cellulose led to carbohydrate yields over 70% and a final concentration of ~5 wt%, whereas the same conditions without formaldehyde gave a yield of 28%. This stabilization strategy pushes back the longstanding kinetic limits of polysaccharide depolymerization and enables the recovery of biomass-derived carbohydrates in high yields and concentrations

    Solvent-Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading

    Get PDF
    We recently reported a nonenzymatic biomass deconstruction process for producing carbohydrates using homogeneous mixtures of γ-valerolactone (GVL) and water as a solvent. A key step in this process is the separation of the GVL from the aqueous phase, enabling GVL recycling and the production of a concentrated aqueous carbohydrate solution. In this study, we demonstrate that phenolic solvents—sec-butylphenol, nonylphenol, and lignin-derived propyl guaiacol—are effective at separating GVL from the aqueous phase using only small amounts of solvent (0.5 g per g of the original water, GVL, and sugar hydrolysate). Furthermore, using nonylphenol, we produced a hydrolysate that supported robust growth and high yields of ethanol (0.49 g EtOH per g glucose) at an industrially relevant concentration (50.8 g L−1 EtOH). These results suggest that using phenolic solvents could be an interesting solution for separating and/or detoxifying aqueous carbohydrate solutions produced using GVL-based biomass deconstruction processes

    Stabilization strategies in biomass depolymerization using chemical functionalization

    No full text
    A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals.Deconstructing plant-derived polymers into small molecules is necessary for biomass valorization but gives intermediates that undergo undesirable reactions. This Review describes how the intermediates can be converted into stable derivatives as renewable-platform chemicals

    Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin

    No full text
    Lignin is one of the most promising sources of renewable aromatic hydrocarbons. Current methods for its extraction from lignocellulosic biomass—which include the kraft, sulfite, and organosolv processes—result in the rapid formation of carbon–carbon bonds, leading to a condensed lignin that cannot be effectively depolymerized into its constituent monomers. Treatment of lignocellulosic biomass with aldehydes during lignin extraction generates an aldehyde-stabilized lignin that is uncondensed and can be converted into its monomers at near-theoretical yields. Here, we outline an efficient, reproducible, and scalable process for extracting and purifying this aldehyde-stabilized lignin as a solid, which can easily be re-dissolved in an organic solvent. Upon exposure to hydrogenolysis conditions, this material provides near-theoretical yields of aromatic monomers (~40–50% of the Klason lignin for a typical hardwood). Cellulose and hemicellulose are also efficiently fractionated. This protocol requires 6–7 h for the extraction of the stabilized lignin and a basic proficiency in synthetic chemistry

    Catalytic valorization of the acetate fraction of biomass to aromatics and its integration into the carboxylate platform

    No full text
    In many plant species, the acetate fraction is the fourth most prominent fraction by weight after cellulose, hemicellulose and lignin, and can be easily extracted as a single stable molecule, acetic acid, at high yields. Despite this, upgrading the acetate fraction of biomass has received very limited attention. Here, we demonstrate a valorization route for the acetate fraction as well as mixtures of acetic acid and other volatile fatty acids produced from the polysaccharide fraction. Aqueous solutions of acetic acid, including solutions produced during steam explosion pretreatment and subsequently purified can be upgraded at high selectivity to a valuable mixture of aromatics, substituted cycloalkenes and gas olefins in a single step using Cu/ZrO2. The catalyst displays remarkable stability despite the presence of acids, water and other biomass-derived impurities. We also show that acetic acid can be further valorized over the same catalyst by converting it in the presence of butanoic acid that was produced in a consolidated bioprocess from the same pretreated wood that was the source of the acetic acid. In this case, the acetic acid rapidly ketonizes with the butanoic acid and the resulting beta-ketones further condense to form aromatics and cycloalkenes with a higher average carbon number than those produced solely from acetic acid. Overall, our process yields a biomass-derived organic oil consisting of aromatics and cycloalkenes that spontaneously separates from water, can be tuned by varying the incoming mixture of carboxylic acids and has suitable properties for being used as a direct blend with aviation fuel
    corecore