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We recently reported a nonenzymatic biomass deconstruction
process for producing carbohydrates using homogeneous mix-
tures of g-valerolactone (GVL) and water as a solvent. A key
step in this process is the separation of the GVL from the
aqueous phase, enabling GVL recycling and the production of
a concentrated aqueous carbohydrate solution. In this study,
we demonstrate that phenolic solvents—sec-butylphenol, non-
ylphenol, and lignin-derived propyl guaiacol—are effective at
separating GVL from the aqueous phase using only small
amounts of solvent (0.5 g per g of the original water, GVL, and
sugar hydrolysate). Furthermore, using nonylphenol, we pro-
duced a hydrolysate that supported robust growth and high
yields of ethanol (0.49 g EtOH per g glucose) at an industrially
relevant concentration (50.8 g L¢1 EtOH). These results suggest
that using phenolic solvents could be an interesting solution
for separating and/or detoxifying aqueous carbohydrate solu-
tions produced using GVL-based biomass deconstruction pro-
cesses.

Lignocellulosic biomass is emerging as a potential renewable
feedstock to replace crude oil as a source of fuels and com-
modity chemicals. For this reason, targeted upgrading routes
are being sought to convert biomass to these valuable prod-
ucts. In this context, soluble carbohydrates are an attractive in-
termediate for biomass upgrading. By weight, structural poly-
saccharides typically represent between 60 and 80 wt % of
lignocellulosic biomass. In addition, many chemical[1–4] and bio-
logical[5–8] processes exist for upgrading carbohydrates to fuels
and chemicals.

Different strategies exist for deconstructing biomass hemi-
cellulose (a polymer of C5 sugars; mostly xylose) and cellulose
(a polymer of cellobiose, a dimer of glucose) to their soluble
counterparts. Concentrated mineral acids such as sulfuric or
hydrochloric acid have been used to hydrolyze hemicellulose
and cellulose to soluble oligomers almost quantitatively.[9–13]

Recently, a two-stage process consisting of a thermochemical

or pretreatment stage followed by enzymatic hydrolysis has
been one of the most prominently researched biomass depoly-
merization methods.[14–17] Both of these methods can achieve
soluble carbohydrate yields upwards of 90 % and produce con-
centrated solutions of carbohydrates (>100 g L¢1).[10, 13, 18] Ionic
liquids are also attractive solvents for cellulose dissolution and
soluble carbohydrate production.[19, 20] Although these process-
es can be used to produce sugars from biomass, the cost of
producing and/or recovering the enzyme, mineral acid, or sol-
vent still represents a significant portion of the final pro-
cess.[21–23] For this reason, alternate systems using significantly
less catalyst have also been explored, including dilute acid hy-
drolysis[24, 25] or hydrothermal biomass depolymerization.[13, 26–28]

However, at most temperatures (below 510–570 K) and low
acid contents (>3 %), the rate of sugar degradation and dehy-
dration to furans or other degradation products is of the same
order of magnitude as the rate of polysaccharide depolymeri-
zation, especially for the cellulose fraction of biomass.[13, 25, 29, 30]

Therefore, both pure water and dilute acid systems require im-
practical high-temperature and short-residence time processes
to achieve high yields (e.g. , 510–670 K for minutes to sec-
onds).[24, 27, 29]

Organic solvents such as alcohols and ketones have been
used during pretreatment to improve the deconstruction of
biomass notably by increasing lignin solubility.[31, 32] However,
these processes still require a subsequent enzymatic hydrolysis
step to produce high yields of soluble sugars. Recently, we re-
ported an alternative nonenzymatic process for depolymeriz-
ing biomass using g-valerolactone (GVL) as a solvent.[33] In this
process, a mixture containing 80 wt % or more GVL, water and
2 % or less H2SO4 was used to recover 70–90 % of biomass
polysaccharides as soluble sugars and 85–95 % of identifiable
products once dehydration products (furfural, 5-(hydroxyme-
thyl)furfural, and levulinic acid) were included. The production
of carbohydrates in the presence of GVL is improved com-
pared to conversion in pure water due to favorable solvent ef-
fects on the acid-catalyzed hydrolysis and dehydration kinetics
involved in carbohydrate systems.[34, 35] Initial economic model-
ing of this process revealed that a key design variable for
making the process economically feasible is the successful sep-
aration and recycling of the GVL solvent.[33] A successful sepa-
ration was achieved by addition of liquid CO2, which forms
a CO2-expanded GVL phase that, unlike pure GVL, is no longer
soluble with water. This addition of CO2 concentrates the
sugars 4–5 fold in the aqueous phase using a low-energy GVL
separation and reuse process. However, the high pressures (>
5 MPa) involved in the CO2 separation process can lead to
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safety issues and increased equipment and energy costs,
which led us to explore alternative separation solutions.

Here, we demonstrate that phenolic solvents such as sec-bu-
tylphenol (SBP), nonylphenol (NP), or propyl guaiacol (PG, a po-
tential derivative of lignin)[36, 37] can be effective phase modifi-
ers to render the GVL phase insoluble with water while avoid-
ing the pressures associated with liquid CO2. These solvents
lead to improved separation efficiencies, higher sugar concen-
trations, and, in the case of separation with nonylphenol, a hy-
drolysate with reduced toxicity for fermentative organisms
even compared with the hydrolysate produced using CO2.

To further explore the separation between GVL and aqueous
sugar solutions that we produced from biomass, different or-
ganic solvents were screened for their abilities to form a GVL-
organic phase insoluble in the aqueous solution. Several sol-
vents including alkylphenols such as NP, SBP, or tert-butylphe-
nol (TBP) formed such a phase. We also tested PG, a potential
product of lignin hydrogenolysis,[36, 37] which successfully
formed similar phases. We then explored the effect of increas-
ing the solvent content on the effective recovery of sugars
(monomers and oligomers) produced from corn stover in the
aqueous phase and on the removal of GVL from said aqueous
phase (Figure 1). We performed similar experiments using CO2

for comparison purposes. Carbohydrate recovery of both C5

and C6 sugars (monomers and oligomers) is maximized when
an amount of NP (Figure 1 A), PG (Figure 1 B), or SBP (Fig-
ure 1 C) corresponding to 50 % of the original water, GVL, and
sugar solution is added. This maximum is the result of two
competing effects: (1) the increasing amount of organic phase,
which increases the total quantity of sugars extracted in that
phase; and (2) the increasing partition of the sugars to the
aqueous phase as more solvent is added (Table S1 in the Sup-
porting Information), which decreases the concentration of
sugars in the organic phase. The increasing partition of C5 and
C6 sugars into the aqueous phase occurs as the organic phase
transitions from containing mostly GVL to containing mostly
the added organic solvent. The increase in sugar partition to
the aqueous phase is likely due to the fact that sugars are
somewhat soluble in GVL but almost completely insoluble in
the phenolic solvents we are using. In contrast to these
maxima in sugar recovery, we see that sugar recovery remains
relatively constant as more solvent is added when TBP (Fig-
ure 1 D) or CO2 (Figure 1 F) are used as solvents. The aforemen-
tioned variations in partition coefficients are less pronounced
for GVL itself (Table S1), and therefore, a much more monoton-
ic decrease in GVL concentration is observed with increased
addition of external solvent (Figure 1).

To increase the total extracted GVL and further reduce its
concentration in the aqueous phase, we studied subsequent
extractions using each of these organic solvents. In these stud-
ies, a first extraction using an amount of external solvent corre-
sponding to 50 % of the weight of the extracted solution was
used in combination with a second, third, and fourth subse-
quent extraction using an amount of external solvent corre-
sponding to 25 % of the weight of the extracted solution (Fig-
ure 2 A–C). We did not test subsequent extractions using TBP
because its ability to extract GVL from the aqueous phase was

limited compared to the other solvents (Figure 1 D and
Table S1). The efficiency of GVL removal increased according to
the GVL partition coefficient observed during the first extrac-
tions (Figure 2). Therefore, after four extractions, the GVL con-
tent in the aqueous phase was the lowest (under 0.5 wt %)
when SBP was used as the extraction solvent, which showed
partition coefficients as high as 6.4 (Table S1, Figure 2 C). The
aqueous phases extracted with NP and PG contained 1.7 and
1.6 wt % GVL, respectively, after four subsequent extractions.
This observation reflects the fact that these two solvents had
lower GVL partition coefficients than SBP. The final GVL con-
centration in the aqueous phase was 0.5 wt % after four subse-
quent extractions using CO2 (Figure 2 D). Given the greater
amount of CO2 used compared to the other organic solvents,
this behavior indicates that CO2 shows reduced extraction effi-
ciency compared to the other organic solvents.

The removal of a significant portion of the GVL after the first
extraction led to a 5–6-fold increase in the sugar concentration
in the resulting aqueous phase compared to the initial mixture
(Figure 2 E). After this first extraction, oligomers were hydro-
lyzed to form more easily metabolized monomers by adding
0.025 mol L¢1 H2SO4 to the aqueous phase. H2SO4 was used to
compensate for the neutralization of the initial acid by the bio-
mass. The entire solution was heated to 410 K for 100 min.
Typical monomer yields were 90�5 %. This range of results is
typical for oligomer hydrolysis and is due to various sources of
uncertainty including the capacity of biomass to neutralize
acidity capacity, the fraction of oligomers, and the partitioning
of oligomers versus monomers during the initial extraction.
After the four extractions, the total concentration of sugars
(C5 + C6 sugars) further increased to 9.9, 11.4, 10.6, and 7.8 wt %
for NP, PG, SBP, and CO2 respectively (Figure 2 E). Despite this
difference in sugar concentrations, sugar recovery in the aque-
ous phase was remarkably high (>96 %) for all solvents follow-
ing the initial extraction. In addition to these results, we tested
the extraction procedure using NP and CO2 on a more concen-
trated biomass feed that we are able to produce using a two-
step nonenzymatic hydrolysis process.[33] We observed higher
separation efficiencies (by 7–10 %) due to the solubility of
sugar in the organic phase remaining constant despite an in-
crease in the total amount of sugars. This resulted in increased
final carbohydrate concentrations of 15.3 and 12.7 wt % for NP
and CO2 extraction, respectively.

All resulting monomer solutions discussed above were
tested for their potential in biological upgrading by diluting
them with minimal media and inoculating them with S. cervi-
siae PE2, which is a glucose-fermenting industrial strain
(Table 1). Initial aeration of the yeast strain was accomplished
by a single injection of air.[33] SBP- and PG-extracted solutions
only supported growth after considerable dilutions (Table 1).
Although we were not able to detect any of the two solvents
in the hydrolysate using GC, trace amounts were likely present
and led to toxicity for microorganisms. As we previously re-
ported, the CO2-extracted aqueous sugar solution was able to
support robust microbial growth once it was diluted to 75 % of
its original solution, producing glucose-to-ethanol yields corre-
sponding to 87 % of theoretical yield.[33] In this study, by using
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larger vials and fermentation volumes, we were able to better
control the initial amount of oxygen that was injected into the
reactor, increasing our glucose-to-ethanol yields to 96 % of the-

oretical yield (Figure S1 and Table 1). Our final ethanol concen-
tration reached 34.7 g per kg glucose. Although we did not
use an organism that metabolizes xylose, conversion of xylose

Figure 1. Effect of added solvent on carbohydrate recovery in the aqueous phase from 80 % GVL/20 % water corn stover-derived hydrolysates for (A) NP,
(B) PG, (C) SBP, (D) TBP, and (E) CO2. The original solution refers to the original water, GVL, and sugar hydrolysate.
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Figure 2. Subsequent extractions of 80 % GVL/20 % water corn stover-derived hydrolysates for (A) NP, (B) PG, (C) SBP, and (D) CO2. (E) Evolution of concentra-
tion with subsequent extractions with “140 8C, 100 min” designating the step of hydrolyzing oligomers to monomers after the first extraction. Extraction re-
sults from hydrolysates produced using the single-stage depolymerization process are shown to the left of the dashed line, whereas results from hydrolysates
produced using the two-stage depolymerization process are shown to the right of the dashed line. The data presented on (E) is also given in Table S2 (Sup-
porting Information).
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and other C5 sugars is essential as they represent a significant
portion of biomass’s structural carbohydrates and 35–45 wt %
of the sugars we produce. Nevertheless, efficient co-utilization
of xylose and glucose was demonstrated in several studies
using other mutant S. cerevisiae strains.[5, 38, 39] If we assume that
ethanol can be produced at similar yields to those obtained
from glucose, our potential ethanol concentration would be
56 g kg¢1.

In the case of NP extraction, we observed robust growth
using 90 % diluted hydrolysate (Table 1). This dilution was the
minimum required dilution for us to add a salts supplement
solution to the hydrolysate. Therefore, it is possible that NP-ex-
tracted hydrolysate could have supported growth without dilu-
tion. We observed this growth after a 90 % dilution when
using both the hydrolysate produced by means of the single
or the two-stage depolymerization process. Hydrolysate detoxi-
fication during fermentation using organic solvents has been
previously demonstrated in butanol fermentation where con-
tinuous extraction during fermentation was performed to
avoid product inhibition.[40] Interestingly, NP was found to be
toxic to Clostridium acetobutylicum. However, several yeasts
have demonstrated tolerance to NP and even the ability to de-
grade it.[41]

As discussed above, the aqueous carbohydrate solution pro-
duced using NP extraction had a higher initial carbohydrate
concentration than the CO2 phase. This higher concentration,
combined with the lower dilution and a fermentation yield cor-
responding to 96 % of theoretical yield led to ethanol concen-
trations reaching 50.8 g per kg glucose alone. Again, if one as-
sumes that xylose could be converted to ethanol at similar
yields, this could lead to ethanol concentrations close to
81 g kg¢1. Considering that typical industrial scenarios include
target ethanol titers around 50 g kg¢1 (5 wt %) to maintain rea-
sonable separation costs, our potential ethanol concentration
is consistent with that required for industrial ethanol produc-
tion.[42, 43]

In conclusion, alkylphenols are attractive solvents to sepa-
rate g-valerolactone (GVL) and water after depolymerization of
biomass and recover a concentrated aqueous phase of carbo-
hydrates. Nonylphenol is especially well suited to producing

hydrolysates that are compati-
ble with biological upgrading
and require almost no dilution
for robust microbial growth to
occur. The obtained and poten-
tial ethanol concentrations that
we reported for the conversion
of NP-extracted hydrolyzates
(50.8 and 81 g kg¢1) are in the
range of the highest ethanol
concentrations obtained using
enzymatic processes.[44, 45] Phe-
nolic solvents can provide
a more effective separation, re-
quire lower pressure, and can
be used to avoid significant me-
chanical energy for repressuriza-

tion compared to CO2. However, these solvents must then be
separated from GVL by distillation. Although such a step is
often energy intensive, past simulation studies using alkylphe-
nol solvents have shown that GVL’s low heat of vaporization
along with solvent design and high GVL concentrations can
make this process energetically feasible.[46] However, careful
heat integration and process design will likely be necessary if
these solvents are to be used in an industrial extraction pro-
cess.
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