320 research outputs found

    HYDROGRAPHIC OBSERVATIONS OF OXYGEN AND RELATED PHYSICAL VARIABLES IN THE NORTH SEA AND WESTERN ROSSSEA POLYNYA investigations using seagliders, historical observations and numerical modelling

    Get PDF
    Shelf seas are one of the most ecologically and economically important ecosystems of the planet. Dissolved oxygen in particular is of critical importance to maintaining a healthy and stable biological community. This work investigates the physical, chemical and biological drivers of summer oxygen variability in the North Sea (Europe) and Ross Sea polynya (Antarctica). In particular, this work also focuses on the use of new autonomous underwater vehicles, Seagliders, for oceanographic observations of fine scale (a few metres) to basin-wide features (hundreds of kilometres). Two hydrographic surveys in 2010 and 2011 and an analysis of historical data dating back to 1902 revealed low dissolved oxygen in the bottom mixed layer of the central North Sea.We deployed a Seaglider in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. Historical data highlighted an increase in seasonal oxygen depletion and a warming over the past 20 years. Regions showing sub-saturation oxygen concentrations were identified in the central and northern North Sea post-1990 where previously no depletion was identified. Low dissolved oxygen was apparent in regions characterised by low advection, high stratification, elevated organic matter production from the spring bloom and a deep chlorophyll maximum. The constant consumption of oxygen for the remineralisation of the matter exported below the thermocline exceeded the supply from horizontal advection or vertical diffusion. The Seaglider identified cross-pycnocline mixing features responsible for reoxygenation of the bottom mixed layer not currently resolved by models of the North Sea. Using the data, we were also able to constrain the relative importance of different sources of organic matter leading to oxygen consumption. iii From November 2010 to February 2011, two Seagliders were deployed in the Ross polynya to observe the initiation and evolution of the spring bloom. Seagliders were a novel and effective tool to bypass the sampling difficulties caused by the presence of ice and the remoteness of the region, in particular they were able to obtain data in the polynya before access was possible by oceanographic vessels. Seagliders were able to survey the region at a fraction of the cost and inconvenience of traditional ship surveys and moorings. We present observations of a large phytoplankton bloom in the Ross Sea polynya, export of organic matter and related fluctuations in dissolved oxygen concentrations. The bloom was found to be widespread and unrelated to the presence of Ross Bank. Increased fluorescence was identified through the use of satellite ocean colour data and is likely related to the intrusion of modified circumpolar deep water. In parallel, changes in dissolved oxygen concentration are quantified and highlight the importance of a deep chlorophyll maximum as a driver of primary production in the Ross Sea polynya. Both the variability of the biological features and the inherent difficulties in observing these features using other means are highlighted by the analysis of Seaglider data. The Seaglider proved to be an excellent tool for monitoring shelf sea processes despite challenges to Seaglider deployments posed by the ice presence, high tidal velocities, shallow bathymetry and lack of accurate means of calibration. Data collected show great potential for improving biogeochemical models by providing means to obtain novel oceanographic observations along and across a range of scales

    Drivers of summer oxygen depletion in the central North Sea

    Get PDF
    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment. The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm−3 day−1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm−3 day−1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm−3 day−1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models

    Dry etching of single crystal PMN-PT piezoelectric material.

    No full text
    International audienceDuring the last decade, the applications of PMN-PT spread significantly. Unlike PZT, the appropriate microtechnologies for PMN-PT Piezo-MEMS aren't fully documented in the literature. This paper deals with the PMN-PT etching by inductively coupled plasma (ICP) technique, also known as DRIE. The paper quantitatively presents the etching parameters of PMN-PT by the Ar/C4F8 gas combination and reports some related useful experience

    Statistical modeling of the influence of a visual distractor on the following eye-fixations

    No full text
    International audienceWe examined the influence of a visual distractor appearing during a fixation on the following fixations during natural exploration. It is known that new objects, congruent or incongruent with the scene, appearing during a fixation are fixated more than chance [Brockmole, J. R., & Henderson, J. M. (2008). Prioritizing new objects for eye fixation in real-world scenes: Effects of object-scene consistency. Vis. Cog., 16(2-3), 375-390]. In this study, we replicated this result using a Gabor patch for the appearing object, called a distractor because it was artificial and non-related to scenes. Besides, we wanted to quantify its influence on the exploration. A statistical model of the fixation density function was designed to analyze how the exploration was disrupted from and after the onset of the distractor. The model was composed of a linear weighted combination of different maps modeling three independent factors influencing gaze positions. We wondered whether fixation locations observed were rather due to the distractor or the saliency of the scenes. As expected, at the beginning of the exploration, fixation locations were not randomly chosen but influenced by the saliency of the scene and the distractor. The distractor onset strongly influenced fixations and this influence decreased with time
    • …
    corecore