12 research outputs found

    B-Cell Activating Factor Secreted by Neutrophils Is a Critical Player in Lung Inflammation to Cigarette Smoke Exposure.

    Get PDF
    Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity

    Acute respiratory barrier disruption by ozone exposure in mice

    Get PDF
    Ozone exposure causes irritation, airway hyperreactivity (AHR), inflammation of the airways, and destruction of alveoli (emphysema), the gas exchange area of the lung in human and mice. This review focuses on the acute disruption of the respiratory epithelial barrier in mice. A single high dose ozone exposure (1 ppm for 1 h) causes first a break of the bronchiolar epithelium within 2 h with leak of serum proteins in the broncho-alveolar space, disruption of epithelial tight junctions and cell death, which is followed at 6 h by ROS activation, AHR, myeloid cell recruitment, and remodeling. High ROS levels activate a novel PGAM5 phosphatase dependent cell-death pathway, called oxeiptosis. Bronchiolar cell wall damage and inflammation upon a single ozone exposure are reversible. However, chronic ozone exposure leads to progressive and irreversible loss of alveolar epithelial cells and alveoli with reduced gas exchange space known as emphysema. It is further associated with chronic inflammation and fibrosis of the lung, resembling other environmental pollutants and cigarette smoke in pathogenesis of asthma, and chronic obstructive pulmonary disease (COPD). Here, we review recent data on the mechanisms of ozone induced injury on the different cell types and pathways with a focus on the role of the IL-1 family cytokines and the related IL-33. The relation of chronic ozone exposure induced lung disease with asthma and COPD and the fact that ozone exacerbates asthma and COPD is emphasized

    Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation

    No full text
    International audienceUpon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T.gondii-induced small intestinal inflammation. Oral T.gondii infection in B6 mice causes inflammation with IFNγ and IL-22 production. In IL-22-deficient mice, T.gondii infection augments the Th1 driven inflammation. Deficiency in either IL-22bp, the soluble IL-22 receptor or Reg3γ, an IL-22-dependent antimicrobial lectin/peptide, did not reduce inflammation. Under germ-free conditions, T.gondii-induced inflammation was reduced in correlation with parasite load. But intestinal inflammation is still present in germ-free mice, at low level, in the lamina propria, independently of IL-22 expression. Exacerbated intestinal inflammation driven by absence of IL-22 appears to be independent of IL-22 deficiency associated-dysbiosis as similar inflammation was observed after fecal transplantation of IL-22-/- or WT microbiota to germ-free-WT mice. Our results suggest cooperation between parasite and intestinal microbiota in small intestine inflammation development and endogenous IL-22 seems to exert a protective role independently of its effect on the microbiota. In conclusion, IL-22 participates in T.gondii induced acute small intestinal inflammation independently of microbiota and Reg3γ

    Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation

    No full text
    Upon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T. gondii-induced small intestinal inflammation. Oral T. gondii infection in B6 mice causes inflammation with IFN. and IL-22 production. In IL-22-deficient mice, T. gondii infection augments the Th1 driven inflammation. Deficiency in either IL-22bp, the soluble IL-22 receptor or Reg3 gamma, an IL-22-dependent antimicrobial lectin/peptide, did not reduce inflammation. Under germ-free conditions, T. gondii-induced inflammation was reduced in correlation with parasite load. But intestinal inflammation is still present in germ-free mice, at low level, in the lamina propria, independently of IL-22 expression. Exacerbated intestinal inflammation driven by absence of IL-22 appears to be independent of IL-22 deficiency associated-dysbiosis as similar inflammation was observed after fecal transplantation of IL-22(-/-) or WT microbiota to germ-free-WT mice. Our results suggest cooperation between parasite and intestinal microbiota in small intestine inflammation development and endogenous IL-22 seems to exert a protective role independently of its effect on the microbiota. In conclusion, IL-22 participates in T. gondii induced acute small intestinal inflammation independently of microbiota and Reg3 gamma

    Differential inhibitory effects of indomethacin, dexamethasone, and interferon-gamma (IFN-γ) on IL-11 production by rheumatoid synovial cells

    No full text
    IL-11, a member of the IL-6 type cytokines, has some biological activity related to the joint destruction in rheumatoid arthritis (RA), such as induction of osteoclast differentiation. However, its expression and regulation in rheumatoid inflamed joints has not been clarified. In the present study we examined the capacity of fresh rheumatoid synovial cells (fresh RSC) to produce IL-11, and the effect of indomethacin, dexamethasone and IFN-γ on IL-11 production. Fresh RSC obtained from eight patients with RA produced large amounts of IL-11, measured by ELISA, and showed strong expression of IL-11 mRNA, determined by Northern blotting. Indomethacin inhibited the production of IL-11 by about 55%. Prostaglandin E2 (PGE2) completely prevented the inhibition, suggesting that IL-11 production by fresh RSC was in part mediated by PGE2. Dexamethasone inhibited the production of IL-11 by more than 80%. Interestingly, the inhibition was not abolished by PGE2. IFN-γ inhibited the production of IL-11 from IL-1α-stimulated cultured rheumatoid synovial fibroblasts, although IFN-γ did not inhibit the production of IL-11 by fresh RSC. These results suggest that the production of IL-11 by rheumatoid synovia was differentially regulated by PGE2 and IFN-γ, and that treatment with indomethacin or dexamethasone decreased the level of IL-11 at inflammatory joints in patients with RA
    corecore