2,379 research outputs found

    Neural network monitoring of resistance welding processes

    Get PDF
    Control of weld quality is one of the most important and complex processes to be carried out on production lines. Neural networks have shown good results in fields such as modelling and control of physical processes. It is suggested in this article that a neural classifier should be used to carry out non‐destructive on‐line analysis. This system has been developed and installed at resistance welding stations. Results confirm the validity of neural networks used for this type of application

    LCA of alternative biochar production technologies

    Get PDF
    This paper investigates the environmental performance of biochar produced using different technologies including: traditional earth kiln; metal ring kiln, Missouri kiln and Missouri with gas recycling. The analysis has been produced using Life Cycle Analysis (LCA) and includes extensive inventory of direct gas emissions during the carbonization stage. The normalized analysis evidence that the impact categories most severely affected are photochemical oxidant formation, human toxicity and climate change. In the case of climate change, impact values ranged between 2773 and 4714 kg CO2/ton, with lower emissions produced by advanced carbonization technologies due to higher product yields, improved thermal efficiency (which results in reduced combustion of primary products) and elimination of volatile pollutants in the gas condenser and post-combustor. Single point indicator analysis evidences a 33-40 % reduction in environmental impact when using advanced processing methods compared to traditional charcoal production

    Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea

    Get PDF
    Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio-temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run-off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems

    Potential Use of Waste in Electrocatalysis Using Foundry Sand as Electrocatalyst for the Hydrogen Evolution Reaction.

    Get PDF
    Approximately 13 million tons of foundry sand (FS), a waste from the metallurgic industry, are produced worldwide annually. Although several applications for this waste have been reported, there is a lack of research regarding its application in energy production, such as the hydrogen evolution reaction (HER). Due to several metal oxides commonly present in this waste, like iron oxides, FS may have great potential for HER. Simple carbon-paste electrodes comprised of graphite and FS were prepared and tested for HER. FS, after thermal treatment, showed an onset potential near +0.39 V vs Reversible Hydrogen Electrode and a current density of approximately 16 mA cm‒2 at ‒0.9 V. HER geometric rate, turnover number (TON), and faradaic efficiency were 1.77 μmol h‒1 cm‒2 , 3126, and 43.4%, respectively. Those are reasonable values compared to the ones reported in the literature, showing the potential of this waste for the manufacturing of low-cost electrodes

    Plasmonic optical fiber meta-tip for cancer biomarkers detection

    Get PDF
    Sensors based on Lab-On-Tip (LOT) technology, where suitably designed nanostructures are integrated onto the end face of an optical fiber, are of strategic importance especially in medicine and clinical diagnostics, where minia- turization and portability are key characteristics. To improve the performance of LOT biosensors, we proposed the integration of the optical fiber with plasmonic Metasurfaces (Optical fiber meta-tip, OFMT), sensibly enhancing the light-matter interaction. Here we report on the remarkable capabilities of plasmonic OFMTs to perform label-free detection of cancer biomarkers with improved performances with respect to state-of-the-art optical fiber senso

    Label-free fiber optic optrode for the detection of class C beta-lactamases expressed by drug resistant bacteria

    Get PDF
    This paper reports the experimental assessment of an automated optical assay based on label free optical fiber optrodes for the fast detection of class C beta-lactamases (AmpC BLs), actually considered as one of the most important sources of resistance to beta-lactams antibiotics expressed by resistant bacteria. Reflection-type long period fiber gratings (RT-LPG) have been used as highly sensitive label free optrodes, while a higher affine boronic acid based ligand was here selected to enhance the overall assay performances compared to those obtained in our first demonstration. In order to prove the feasibility analysis towards a fully automated optical assay, an engineered system was developed to simultaneously manipulate and interrogate multiple fiber optic optrodes in the different phases of the assay. The automated system tested in AmpC solutions at increasing concentrations demonstrated a limit of detection (LOD) of 6 nM, three times better when compared with the results obtained in our previous work. Moreover, the real effectiveness of the proposed optical assay has been also confirmed in complex matrices as the case of lysates of Escherichia coli overexpressing AmpC. (C) 2017 Optical Society of Americ

    Pancreaticoduodenectomy model demonstrates a fundamental role of dysfunctional β cells in predicting diabetes

    Get PDF
    BACKGROUND. The appearance of hyperglycemia is due to insulin resistance, functional deficits in the secretion of insulin, and a reduction of β cell mass. There is a long-standing debate as to the relative contribution of these factors to clinically manifesting β cell dysfunction. The aim of this study was to verify the acute effect of one of these factors, the reduction of β cell mass, on the subsequent development of hyperglycemia. METHODS. To pursue this aim, nondiabetic patients, scheduled for identical pancreaticoduodenectomy surgery, underwent oral glucose tolerance tests (OGTT) and hyperglycemic clamp (HC) procedures, followed by arginine stimulation before and after surgery. Based on postsurgery OGTT, subjects were divided into 3 groups depending on glucose tolerance: normal glucose tolerance (post-NGT), impaired glucose tolerance (post-IGT), or having diabetes mellitus (post-DM). RESULTS. At baseline, the 3 groups showed similar fasting glucose and insulin levels; however, examining the various parameters, we found that reduced first-phase insulin secretion, reduced glucose sensitivity, and rate sensitivity were predictors of eventual postsurgery development of IGT and diabetes. CONCLUSION. Despite comparable functional mass and fasting glucose and insulin levels at baseline and the very same 50% mass reduction, only reduced first-phase insulin secretion and glucose sensitivity predicted the appearance of hyperglycemia. These functional alterations could be pivotal to the pathogenesis of type 2 diabetes (T2DM)

    Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes

    Get PDF
    Aims/hypothesis: Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. Methods: In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. Results: We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. Conclusions/interpretation: Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity. Graphical abstract: [Figure not available: see fulltext.

    ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours

    Get PDF
    Activation of the ERK1/2 pathway is involved in malignant transformation both in vitro and in vivo. Little is known about the role of activated ERK1/2 in non-small cell lung cancer (NSCLC). The purpose of this study was to characterise the extent of the activation of ERK1/2 by immunohistochemistry in patients with NSCLC, and to determine the relationship of ERK1/2 activation with clinicopathological variables. Specimens from 111 patients with NSCLC (stages I-IV) were stained for P-ERK. Staining for epidermal growth factor receptor (EGFR) and Ki-67 was also performed. In all, 34% of the tumour specimens showed activation for ERK1/2, while normal lung epithelial tissue was consistently negative. There was a strong statistical correlation between nuclear and cytoplasmic P-ERK staining and advanced stages (P<0.05 and P<0.001, respectively), metastatic hilar or mediastinal lymph nodes (P<0.01, P<0.001), and higher T stages (P<0.01, P<0.001). We did not find correlation of nuclear or cytoplasmic P-ERK staining with either EGFR expression or Ki-67 expression. Total ERK1/2 expression was evaluated with a specific ERK1/2 antibody and showed that P-ERK staining was not due to ERK overexpression but rather to hyperactivation of ERK1/2. Patients with a positive P-ERK cytoplasmic staining had a significant lower survival (P<0.05). However, multivariate analysis did not show significant survival difference. Our study indicates that nuclear and cytoplasmic ERK1/2 activation positively correlates with stage, T and lymph node metastases, and thus, is associated with advanced and aggressive NSCLC tumours
    corecore