2,796 research outputs found

    Mid-term results after operative treatment of rockwood grade III-V Acromioclavicular joint dislocations with an AC-hook-plate

    Get PDF
    Acromioclavicular joint dislocations often occur in athletic, young patients after blunt force to the shoulder. Several static and dynamic operative procedures with or without primary ligament replacement have been described. Between February 2003 and March 2009 we treated 313 patients suffering from Rockwood III-V lesions of the AC joint with an AC-hook plate. 225 (72%) of these patients could be followed up. Mean operation time was 42 minutes in the conventional group and 47 minutes in the minimal invasive group. The postoperative pain on a scale from 1 to 10 (VAS-scale) was rated 2.7 in the conventional group and 2.2 in the minimal invasive group. Taft score showed very good and good results in 189 patients (84%). Constant score showed an average of 92.4 of 100 possible points with 89% excellent and good results and 11% satisfying results. All patients had some degree of pain or discomfort with the hookplate in place. These symptoms were relieved after removal of the plate. The overall complication rate was 10.6%. There were 6 superficial soft tissue infections, 1 fracture of the acromion, 7 redislocations after removal of the hook-plate. We observed 4 broken hooks which could be removed at the time of plate removal, 4 seromas and 2 cases of lateral clavicle bone infection, which required early removal of the plate. We can conclude that clavicle hook plate is a convenient device for the surgical treatment of Rockwood Grade III-V dislocations, giving good mid-term results with a low overall complication rate compared to the literature. Early functional therapy is possible and can avoid limitations in postoperative shoulder function

    Selective pressures on genomes in molecular evolution

    Get PDF
    We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) gives rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.Comment: 16 pages, 3 figures, to be published in J. theor. Biolog

    Aging cellular networks: chaperones as major participants

    Full text link
    We increasingly rely on the network approach to understand the complexity of cellular functions. Chaperones (heat shock proteins) are key "networkers", which have among their functions to sequester and repair damaged protein. In order to link the network approach and chaperones with the aging process, we first summarize the properties of aging networks suggesting a "weak link theory of aging". This theory suggests that age-related random damage primarily affects the overwhelming majority of the low affinity, transient interactions (weak links) in cellular networks leading to increased noise, destabilization and diversity. These processes may be further amplified by age-specific network remodelling and by the sequestration of weakly linked cellular proteins to protein aggregates of aging cells. Chaperones are weakly linked hubs [i.e., network elements with a large number of connections] and inter-modular bridge elements of protein-protein interaction, signalling and mitochondrial networks. As aging proceeds, the increased overload of damaged proteins is an especially important element contributing to cellular disintegration and destabilization. Additionally, chaperone overload may contribute to the increase of "noise" in aging cells, which leads to an increased stochastic resonance resulting in a deficient discrimination between signals and noise. Chaperone- and other multi-target therapies, which restore the missing weak links in aging cellular networks, may emerge as important anti-aging interventions.Comment: 7 pages, 4 figure

    Initial Results of the S3-Humerus Plate

    Get PDF
    Fractures of the humeral head account for 5% of all fractures and incidence increases with age. Depending on fracture form and patients age a wide variety of therapeutical options exist. Stable fractures can be treated conservatively, while the majority of unstable and displaced fractures require surgical treatment. Many different surgical options are available; open reduction and internal fixation are widely preferred. The S3 Proximal Humerus Plate is a contoured plate to match the complex shape of the proximal humerus. It is designed to be positioned distal to the greater tuberosity preventing subacromial impingement

    Evidence for an Epigenetic Mechanism by which Hsp90 Acts as a Capacitor for Morphological Evolution

    Get PDF
    Morphological alterations have been shown to occur in Drosophila melanogaster when function of Hsp90 (heat shock 0-kDa protein 1Ξ±, encoded by Hsp83) is compromised during development1. Genetic selection maintains the altered phenotypes in subsequent generations1. Recent experiments have shown, however, that phenotypic variation still occurs in nearly isogenic recombinant inbred strains of Arabidopsis thaliana2. Using a sensitized isogenic D. melanogaster strain, iso-KrIf-1, we confirm this finding and present evidence supporting an epigenetic mechanism for Hsp90’s capacitor function, whereby reduced activity of Hsp90 induces a heritably altered chromatin state. The altered chromatin state is evidenced by ectopic expression of the morphogen wingless in eye imaginal discs and a corresponding abnormal eye phenotype, both of which are epigenetically heritable in subsequent generations, even when function of Hsp90 is restored. Mutations in nine different genes of the trithorax group that encode chromatin-remodeling proteins also induce the abnormal phenotype. These findings suggest that Hsp90 acts as a capacitor for morphological evolution through epigenetic and genetic mechanisms

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    MicroRNAs and Developmental Robustness: A New Layer Is Revealed

    Get PDF
    MicroRNAs provide a new layer of regulation to ensure that a developmental program of programmed cell death yields a reproducible outcome in spite of perturbations to the system
    • …
    corecore