215 research outputs found

    Propagation of quantum correlations after a quench in the Mott-insulator regime of the Bose-Hubbard model

    Full text link
    We study a quantum quench in the Bose-Hubbard model where the tunneling rate JJ is suddenly switched from zero to a finite value in the Mott regime. In order to solve the many-body quantum dynamics far from equlibrium, we consider the reduced density matrices for a finite number (one, two, three, etc.) of lattice sites and split them up into on-site density operators, i.e., the mean field, plus two-point and three-point correlations etc. Neglecting three-point and higher correlations, we are able to numerically simulate the time-evolution of the few-site density matrices and the two-point quantum correlations (e.g., their effective light-cone structure) for a comparably large number O(103){\cal O}(10^3) of lattice sites

    Sauter-Schwinger like tunneling in tilted Bose-Hubbard lattices in the Mott phase

    Full text link
    We study the Mott phase of the Bose-Hubbard model on a tilted lattice. On the (Gutzwiller) mean-field level, the tilt has no effect -- but quantum fluctuations entail particle-hole pair creation via tunneling. For small potential gradients (long-wavelength limit), we derive a quantitative analogy to the Sauter-Schwinger effect, i.e., electron-positron pair creation out of the vacuum by an electric field. For large tilts, we obtain resonant tunneling related to Bloch oscillations.Comment: 4 pages, 1 figur

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure

    Nonexponetial relaxation of photoinduced conductance in organic field effect transistor

    Get PDF
    We report detailed studies of the slow relaxation of the photoinduced excess charge carriers in organic metal-insulator-semiconductor field effect transistors consisting of poly(3-hexylthiophene) as the active layer. The relaxation process cannot be physically explained by processes, which lead to a simple or a stretched-exponential decay behavior. Models based on serial relaxation dynamics due to a hierarchy of systems with increasing spatial separation of the photo-generated negative and positive charges are used to explain the results. In order to explain the observed trend, the model is further modified by introducing a gate voltage dependent coulombic distribution manifested by the trapped negative charge carriers.Comment: 17 pages, 3 Figure

    Analysis of the impact of dislocation distribution on the breakdown voltage of GaAs-based power varactor diodes

    Get PDF
    A synchrotron x-ray topography analysis of the impact of the distribution of defects/dislocations on the electrical performance of GaAs power varactor diodes was carried out. Diodes fabricated on or near Liquid Encapsulated Czochralski cellular dislocation networks in the substrate, which are also known to be rich in As precipitates near these cell walls, were observed to have reduced breakdown voltages (VBR). This is consistent with the possibility that the presence of space-charge cylinders surrounding these dislocations gives rise to reduced VBR if they thread a p-n junction; it is also in accord with the possibility that the As precipitates themselves can act as sites for local field enhancement, thus promoting premature avalanche breakdown

    Between-day reliability of electromechanical delay of selected neck muscles during performance of maximal isometric efforts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to assess the between-day reliability of the electromechanical delay (EMD) of selected neck muscles during the performance of maximal isometric contractions in five different directions.</p> <p>Methods</p> <p>Twenty-one physically active males participated in two testing sessions separated by seven to eight days. Using a custom-made fixed frame dynamometer, cervical force and surface electromyography (EMG) were recorded bilaterally from the splenius capitis, upper trapezius and sternocleidomastoid muscles during the performance of efforts in extension, flexion, left and right lateral bending, and protraction. The EMD was extracted using the Teager-Kaiser Energy Operator. Reliability indices calculated for each muscle in each testing direction were: the difference in scores between the two testing sessions and corresponding 95% confidence intervals, the standard error of measurement (SEM) and intra-class correlation coefficients (ICC).</p> <p>Results</p> <p>EMD values showed no evidence of systematic difference between the two testing sessions across all muscles and testing directions. The SEM for extension, flexion and lateral bending efforts ranged between 2.5 ms to 4.8 ms, indicating a good level of measurement precision. For protraction, SEM values were higher and considered to be imprecise for research and clinical purposes. ICC values for all muscles across all testing directions ranged from 0.23 to 0.79.</p> <p>Conclusion</p> <p>EMD of selected neck muscles can be measured with sufficient precision for the assessment of neck muscle function in an athletic population in the majority of directions tested.</p

    Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    Get PDF
    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I�, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead

    Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures

    Get PDF
    Combination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning transmission electron microscopy combined with geometrical phase analyses and computer simulations, we are able to establish the relaxation mechanisms (including both elastic and plastic deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been selected as key examples
    corecore