9 research outputs found

    TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/Reperfusion Injury via a Caveolae and Caveolin-3-Dependent Mechanism

    Get PDF
    AS-1, the TIR/BB loop mimetic, plays a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. The muscle specific caveolin3 (Cav-3) and the caveolae have been found to be critical for cardioprotection. This study aimed to evaluate our hypothesis that caveolae and Cav-3 are essential for AS-1-induced cardioprotection against myocardial I/R injury. To address these issues, we analyzed the involvement of Cav-3 in AS-1 mediated cardioprotection both in vivo and in vitro. We demonstrate that AS-1 administration significantly decreased infarct size, improved cardiac function after myocardial I/R and modulated membrane caveolae and Cav-3 expression in the myocardium. For in vitro studies, AS-1 treatment prevented Cav-3 re-distribution induced by H/R injury. In contrast, disruption of caveolae by MCD treatment or Cav-3 knockdown abolished the protection against H/R-induced myocytes injury by AS-1. Our findings reveal that AS-1 attenuates myocardial I/R injury through caveolae and Cav-3 dependent mechanism

    Carbamylated Erythropoietin Protects the Myocardium From Acute Ischemia/Reperfusion Injury Through a PI3K/AKT-Dependent Mechanism

    No full text
    Background: Erythropoietin (EPO) and carbamylated erythropoietin (CEPO) can protect tissue from injury; however, CEPO has its protective effect in the absence of erythropoietic stimulation. The mechanism whereby CEPO protects heart from acute ischemia/reperfusion (I/R) injury remains unknown. Methods: BALB/c mice were subjected to myocardial ischemia for 45 min followed by reperfusion for 4 h, and they received a single dose of CEPO intraperitoneal at the onset of reperfusion. Myocardial infarct size and cardiac function were assessed. The association of erythropoietin receptor with β common receptor (βcR) was examined. The level of Akt phosphorylation in the myocardium was assayed as well as a series of downstream target genes of PI3K/Akt,including p-GATA-4, GATA-4, MHC, and troponin I. Results: CEPO administration immediately before reperfusion decreased infarction by 40% and increased ejection fraction (27%) and fractional shortening (22%), compared with untreated ischemic hearts (P \u3c .05 each). CEPO promoted association of the EPO receptor and βcR. Furthermore, CEPO administration increased the levels of phospho-Akt in the myocardium by 59% (P \u3c .05). A PI3K inhibitor, wortmannin, blocked the beneficial effect of CEPO on infarct size and cardiac function and attenuated the CEPO-induced Akt phosphorylation. CEPO also increased the expression of p-GATA-4, GATA-4, myosin heavy chain, and troponin I. Conclusion: A single dose of CEPO at the onset of reperfusion attenuated acute myocardial I/R injury in the mouse. CEPO-induced cardioprotection appears to be mediated through a PI3K/Akt-dependent mechanism

    Silencing of pellino1 Improves Post-Infarct Cardiac Dysfunction and Attenuates Left Ventricular Remodelling in Mice

    No full text
    AimsPellino1 is an evolutionally conserved immune regulator and participates in the regulation of Toll-like receptor/interleukin-1 receptor (TLR/IL-1R)-mediated signalling. Recent studies have shown that TLR/IL-1R contributes to the left ventricular (LV) remodelling after myocardial infarction (MI). However, the role of Pellino1 in LV remodelling following MI has not been investigated. This study examined the effect of Pellino1 silencing on cardiac function and LV remodelling after MI.Methods and resultsMale C57BL/6 mice were subjected to permanent ligation of left anterior descending coronary artery (LAD) to induce MI. The levels of Pellino1 were significantly increased in the myocardium 3 days and sustained for 4 weeks after MI, when compared with the sham control. Hypoxia increased Pellino1 expression in cultured cardiomyocytes and fibroblasts. To examine whether Pellino1 plays a role in MI-induced cardiac dysfunction and the LV remodelling, we suppressed the expression of Pellino1 either by intramyocardial delivery of adenovirus expressing siRNA for Pellino1 (AdsiPeli1) or by Cre-LoxP-mediated conditional deletion of Pellino1 from the myocardium. In both models, silencing of Pellino1 significantly attenuated MI-induced cardiac dysfunction, decreased scar size, and reduced collagen deposition, when compared with the control groups. Pellino1 silencing in mice also attenuated MI-induced Pellino1 E3 ligase activity, receptor-interacting protein 1 and tumor necrosis factor receptor associated factor 6 (TRAF6) ubiquitination, nuclear factor Kappa B (NF-κB) activity, cytokine production, and inflammatory cell infiltration into the myocardium when compared with the MI group.ConclusionsOur data demonstrate that Pellino1 plays an important role in the pathogenesis of MI. Targeting Pellino1 may ameliorate cardiac dysfunction and remodelling following MI

    Transcription Factor GATA-4 Is Involved in Erythropoietin-Induced Cardioprotection Against Myocardial Ischemia/Reperfusion Injury

    No full text
    Background: Erythropoietin (EPO) can reduce myocardial ischemia/reperfusion (I/R) injury. However, the cellular mechanisms have not been elucidated entirely. The present study was to investigate whether transcription factor GATA-4 could be involved in EPO-induced cardioprotection when it was administered after ischemia, immediately before reperfusion. Methods and results: Male Balb/c mice treated with or without EPO were subjected to ischemia (45 min) followed by reperfusion (4 h). TTC staining showed that the infarct size in EPO-treated mice was significantly reduced compared with untreated I/R mice (P \u3c 0.05). Echocardiography examination suggested that EPO administration significantly improved cardiac function following I/R. TUNEL assay indicated that EPO treatment decreased apoptosis. EPO administration also significantly increased the level of nuclear GATA-4 phosphorylation in the myocardium which was positively correlated with the reduction of myocardial infarction. In vitro hypoxia/re-oxygenation study showed that EPO treatment increased the levels of phospho-GATA-4 and decreased cardiomyocyte apoptosis. More significantly, blocking GATA-4 by transfection of a dominant-negative form of GATA-4 (dnGATA-4) abolished EPO-induced cardioprotective effects. Conclusion: EPO administration after ischemia, just before reperfusion induced cardioprotection and stimulated GATA-4 phosphorylation. Activation of GATA-4 may be one of the mechanisms by which EPO induced protection against myocardial I/R injury

    HNF4α ubiquitination mediated by Peli1 impairs FAO and accelerates pressure overload-induced myocardial hypertrophy

    No full text
    Abstract Impaired fatty acid oxidation (FAO) is a prominent feature of metabolic remodeling observed in pathological myocardial hypertrophy. Hepatocyte nuclear factor 4alpha (HNF4α) is closely associated with FAO in both cellular processes and disease conditions. Pellino 1 (Peli1), an E3 ligase containing a RING-like domain, plays a crucial role in catalyzing polyubiquitination of various substrates. In this study, we aimed to investigate the involvement of HNF4α and its ubiquitination, facilitated by Peli1, in FAO during pressure overload-induced cardiac hypertrophy. Peli1 systemic knockout mice (Peli1KO) display improved myocardial hypertrophy and cardiac function following transverse aortic constriction (TAC). RNA-seq analysis revealed that changes in gene expression related to lipid metabolism caused by TAC were reversed in Peli1KO mice. Importantly, both HNF4α and its downstream genes involved in FAO showed a significant increase in Peli1KO mice. We further used the antagonist BI6015 to inhibit HNF4α and delivered rAAV9-HNF4α to elevate myocardial HNF4α level, and confirmed that HNF4α inhibits the development of cardiac hypertrophy after TAC and is essential for the enhancement of FAO mediated by Peli1 knockout. In vitro experiments using BODIPY incorporation and FAO stress assay demonstrated that HNF4α enhances FAO in cardiomyocytes stimulated with angiotension II (Ang II), while Peli1 suppresses the effect of HNF4α. Mechanistically, immunoprecipitation and mass spectrometry analyses confirmed that Peli1 binds to HNF4α via its RING-like domain and promotes HNF4α ubiquitination at residues K307 and K309. These findings shed light on the underlying mechanisms contributing to impaired FAO and offer valuable insights into a promising therapeutic strategy for addressing pathological cardiac hypertrophy

    Triad3A Attenuates Pathological Cardiac Hypertrophy Involving the Augmentation of Ubiquitination-Mediated Degradation of TLR4 and TLR9

    No full text
    Activation of TLRs mediated the NF-κB signaling pathway plays an important pathophysiological role in cardiac hypertrophy. Triad3A, a ubiquitin E3 ligase, has been reported to negatively regulate NF-κB activation pathway via promoting ubiquitination and degradation of TLR4 and TLR9 in innate immune cells. The role of Triad3A in cardiac hypertrophic development remains unknown. The present study investigated whether there is a link between Triad3A and TLR4 and TLR9 in pressure overload induced cardiac hypertrophy. We observed that Triad3A levels were markedly reduced following transverse aortic constriction (TAC) induced cardiac hypertrophy. Similarly, stimulation of neonatal rat cardiac myocytes (NRCMs) with angiotensin-II (Ang II) significantly decreased Triad3A expression. To determine the role of Triad3A in TAC-induced cardiac hypertrophy, we transduced the myocardium with adenovirus expressing Triad3A followed by induction of TAC. We observed that increased expression of Triad3A significantly attenuated cardiac hypertrophy and improved cardiac function. To investigate the mechanisms by which Triad3A attenuated cardiac hypertrophy, we examined the Triad3A E3 ubiquitination on TLR4 and TLR9. We found that Triad3A promoted TLR4 and TLR9 degradation through ubiquitination. Triad3A mediated TLR4 and TLR9 degradation resulted in suppression of NF-κB activation. Our data suggest that Triad3A plays a protective role in the development of cardiac hypertrophy, at least through catalyzing ubiquitination-mediated degradation of TLR4 and TLR9, thus negatively regulating NF-κB activation

    Pellino1-Mediated TGF-β1 Synthesis Contributes to Mechanical Stress Induced Cardiac Fibroblast Activation

    No full text
    Activation of cardiac fibroblasts is a key event in the progression of cardiac fibrosis that leads to heart failure. However, the molecular mechanisms underlying mechanical stress-induced cardiac fibroblast activation are complex and poorly understood. This study demonstrates that Pellino1, an E3 ubiquitin ligase, was activated in vivo in pressure overloaded rat hearts and in cultured neonatal rat cardiac fibroblasts (NRCFs) exposed to mechanical stretch in vitro. Suppression of the expression and activity of Pellino1 by adenovirus-mediated delivery of shPellino1 (adv-shpeli1) attenuated pressure overload-induced cardiac dysfunction and cardiac hypertrophy and decreased cardiac fibrosis in rat hearts. Transfection of adv-shpeli1 also significantly attenuated mechanical stress-induced proliferation, differentiation and collagen synthesis in NRCFs. Pellino1 silencing also abrogated mechanical stretch-induced polyubiquitination of tumor necrosis factor-alpha receptor association factor-6 (TRAF6) and receptor-interacting protein 1 (RIP1) and consequently decreased the DNA binding activity of nuclear factor-kappa B (NF-κB) in NRCFs. In addition, Pellino1 silencing prevented stretch-induced activation of p38 and activator protein 1 (AP-1) binding activity in NRCFs. Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays showed that Pellino1 silencing prevented the binding of NF-κB and AP-1 to the promoter region of transforming growth factor-β1 (TGF-β1) thus dampening TGF-β1 transactivation. Our data reveal a previously unrecognized role of Pellino1 in extracellular matrix deposition and cardiac fibroblast activation in response to mechanical stress and provides a novel target for treatment of cardiac fibrosis and heart failure

    The TIR/BB-loop mimetic AS-1 Mimetic as-1 Attenuates Mechanical Stress-Induced Cardiac Fibroblast Activation and Paracrine Secretion via Modulation of Large Tumor Suppressor kinase 1

    No full text
    The TIR/BB-loop mimetic AS-1 has been reported to prevent cardiac hypertrophy by inhibiting interleukin-1 receptor (IL-1R)-mediated myeloid differentiation primary response gene 88 (MyD88)-dependent signaling. To date, it remains unknown whether and if so how AS-1 contributes to mechanical stress (MS)-induced cardiac fibroblast activation, a key process in pressure overload-induced cardiac remodeling and heart failure. Here, we show that phosphorylation and expression of large tumor suppressor kinase 1 (LATS1), a key molecule in the Hippo-Yes associated protein (YAP) signaling pathway, were down-regulated in primary neonatal rat cardiac fibroblasts (NRCFs) in response to MS and in the hearts of mice subjected to transverse aortic constriction (TAC) procedure; AS-1 treatment was able to restore LATS1 phosphorylation and expression both in vitro and in vivo. AS-1 treatment suppressed the induction of proliferation, differentiation and collagen synthesis in response to MS in NRCFs. AS-1 also ameliorated cardiomyocyte hypertrophy and apoptosis through dampening paracrine secretion of stretched cardiac fibroblasts. In mice, AS-1 treatment could protect against TAC-induced cardiac hypertrophy, myocardial fibrosis and heart failure. Of note, LATS1 depletion using siRNA completely abrogated the inhibitory effects of AS-1 on NRCFs under MS including accelerated proliferation, differentiation, enhanced ability to produce collagen and augmented paracrine secretion of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) to induce cardiomyocyte hypertrophy. Therefore, our results delineate a previously unrecognized role for LATS1 in cardiac fibroblast to mediate the beneficial effects of AS-1 in preventing pressure overload-induced cardiac remodeling and heart failure
    corecore