
East Tennessee State University East Tennessee State University 

Digital Commons @ East Tennessee State University Digital Commons @ East Tennessee State University 

ETSU Faculty Works Faculty Works 

3-14-2017 

TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/

Reperfusion Injury via a Caveolae and Caveolin-3-Dependent Reperfusion Injury via a Caveolae and Caveolin-3-Dependent 

Mechanism Mechanism 

Yuanping Hu 
Nanjing Medical University 

Meiling Zhang 
Nanjing Medical University 

Xin Shen 
Nanjing Medical University 

Guoliang Dai 
Nanjing University of Traditional Chinese Medicine 

Danyang Ren 
Nanjing Medical University 

See next page for additional authors 

Follow this and additional works at: https://dc.etsu.edu/etsu-works 

Citation Information Citation Information 
Hu, Yuanping; Zhang, Meiling; Shen, Xin; Dai, Guoliang; Ren, Danyang; Que, Linli; Ha, Tuanzhu; Li, Chuanfu; 
Xu, Yong; Ju, Wenzheng; and Li, Yuehua. 2017. TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/
Reperfusion Injury via a Caveolae and Caveolin-3-Dependent Mechanism. Scientific Reports. Vol.7 
https://doi.org/10.1038/srep44638 PMID: 28291255 

This Article is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee 
State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital 
Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/etsu-works
https://dc.etsu.edu/faculty-works
https://dc.etsu.edu/etsu-works?utm_source=dc.etsu.edu%2Fetsu-works%2F10669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1038/srep44638
mailto:digilib@etsu.edu


TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/Reperfusion Injury via a TIR/BB-Loop Mimetic AS-1 Attenuates Cardiac Ischemia/Reperfusion Injury via a 
Caveolae and Caveolin-3-Dependent Mechanism Caveolae and Caveolin-3-Dependent Mechanism 

Copyright Statement Copyright Statement 
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or 
other third party material in this article are included in the article’s Creative Commons license, unless 
indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of 
this license, visit http://creativecommons.org/licenses/by/4.0/ 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

Creator(s) Creator(s) 
Yuanping Hu, Meiling Zhang, Xin Shen, Guoliang Dai, Danyang Ren, Linli Que, Tuanzhu Ha, Chuanfu Li, 
Yong Xu, Wenzheng Ju, and Yuehua Li 

This article is available at Digital Commons @ East Tennessee State University: https://dc.etsu.edu/etsu-works/
10669 

http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dc.etsu.edu/etsu-works/10669
https://dc.etsu.edu/etsu-works/10669


1SCIeNtIfIC ReporTS | 7:44638 | DOI: 10.1038/srep44638

www.nature.com/scientificreports

TIR/BB-loop mimetic AS-1 
attenuates cardiac ischemia/
reperfusion injury via a caveolae 
and caveolin-3-dependent 
mechanism
Yuanping Hu1,2,3, Meiling Zhang1, Xin Shen1, Guoliang Dai4, Danyang Ren1, Linli Que1, 
Tuanzhu Ha5, Chuanfu Li5, Yong Xu1, Wenzheng Ju4 & Yuehua Li1

AS-1, the TIR/BB loop mimetic, plays a protective role in cardiac ischemia/reperfusion (I/R) but the 
molecular mechanism remains unclear. The muscle specific caveolin3 (Cav-3) and the caveolae have 
been found to be critical for cardioprotection. This study aimed to evaluate our hypothesis that caveolae 
and Cav-3 are essential for AS-1-induced cardioprotection against myocardial I/R injury. To address 
these issues, we analyzed the involvement of Cav-3 in AS-1 mediated cardioprotection both in vivo 
and in vitro. We demonstrate that AS-1 administration significantly decreased infarct size, improved 
cardiac function after myocardial I/R and modulated membrane caveolae and Cav-3 expression in the 
myocardium. For in vitro studies, AS-1 treatment prevented Cav-3 re-distribution induced by H/R injury. 
In contrast, disruption of caveolae by MCD treatment or Cav-3 knockdown abolished the protection 
against H/R-induced myocytes injury by AS-1. Our findings reveal that AS-1 attenuates myocardial I/R 
injury through caveolae and Cav-3 dependent mechanism.

It is widely recognized that ischemic cardiomyocytes contribute to the activation of the innate immune response. 
During this process, the damaged cardiomyocytes release “danger” signals, which interact with pattern recog-
nition receptors (PRRs) to activate the immune response. Multiple lines of evidence suggest that TLR/IL-1R 
MyD88-dependent signaling pathway serves to elevate NF-κ​B activity and plays an important role in medi-
ating apoptosis and inflammation during myocardial I/R injury1–3. Our previous data have showed that inhi-
bition of IL-1R/MyD88 interaction by a small-molecule mimetic AS-1 markedly attenuates myocardial I/R 
injury4. Specifically, we observed that administration of AS-1 to mice immediately before reperfusion following 
ischemia significantly protects the myocardium from I/R injury and attenuates I/R-induced production of inflam-
matory cytokines and the infiltration of neutrophils into the myocardium. Our observations suggest that the 
IL-1R-mediated MyD88-dependent signaling pathway contributes to myocardial I/R injury. A single dose (50 mg/
kg) was used in the previous study. However, the pharmacokinetics and tissue distribution of AS-1 after injection 
await elucidation. So we aimed to investigate the pharmacokinetic (PK) parameters and the concentration of AS-1 
in heart samples with single dose administration AS-1 in Wistar Rats in order to devise an adjusted bioequvalence 
assessment strategy for AS-1.

Recent studies have shown that caveolae and its coat protein, caveolin3 (Cav-3), play an important role in 
cardioprotection against I/R injury5–7. Caveolae are small (~100 nm in diameter), cholesterol- and sphingolipid- 
enriched flask-like invaginations of the plasma membrane. Caveolins act as scaffolding proteins, which are 
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essential for caveolae formation. There are three caveolin isoforms: caveolin1 and caveolin2, which are expressed 
in multiple cell types, and muscle-specific isoform-caveolin3 (Cav-3). Cav-3 is the principal protein compo-
nent of caveolae and can function as scaffolds interacting with a number of signaling molecules8,9. However, it is 
unclear whether caveolae and/or Cav-3 could be involved in AS-1-induced cardioprotection.

In the present study, we present new evidence that AS-1 could invoke cardioprotection via attenuat-
ing I/R-induced re-distribution of caveolae to the plasma membrane and by salvaging the loss of Cav-​3 in 
cardiomyocytes.

Results
The chemic molecular parameters of AS-1 and the pharmacokinetics of AS-1 after injection to 
experimental rats.  AS-1 was synthesized as described previously10 and the chemical structure of AS-1 was 
delineated (Fig. 1A). Then we designed a method of electrospray ionization with greater sensitivity and selectivity. 
In negative ion mode, AS-1, the molecular weight of which is 302, showed a peak at 301 m/z in methanol. We used 
a dosage of 35 mg/kg in rats, which was equivalent to the previously used dosage of 50 mg/kg in mice, to detect 
the partial main pharmacokinetic (PK) parameters of AS-1. The PK parameters of AS-1 after administration in 
Wistar rats (n =​ 4) are showed in Table 1. The maximum concentration (Cmax) and half life time (t1/2) of AS-1 after 
injection to rats were 39.94 ±​ 1.67 mg/L and 10.7 ±​ 0.79 min, respectively. As shown in Fig. 1B, the mean plasma 
concentration-time manner of AS-1 following injection declined very rapidly. Then, we determined the concen-
tration-time curve in heart (Fig. 1C). We found AS-1 was present in heart and the clearance of AS-1 in heart was 
much slower than in plasma.

AS-1 treatment reduces myocardial infarct size and improves cardiac function after I/R 
injury.  We next examined the therapeutic effect of AS-1 on myocardial infarct size following myocardial I/R 

Figure 1.  The structure and concentration-time manner of AS-1 in circulation. (A) Full-scan production 
spectra of [M–H]−ions and fragmentation pathways for AS-1; (B) Plasma concentration – time manner after 
interveinal injection 35 mg/kg in Wistar Rats (n =​ 4); (C) Heart concentration – time manner after interveinal 
injection 35 mg/kg in Wistar Rats (n =​ 4).
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injury. Mice were treated with AS-1 at the concentration of 50 mg/kg body weight immediately before reperfusion. 
After 45 min of ischemia and four hours of reperfusion, the hearts were harvested for the evaluation of infarct 
size. As shown in Fig. 2A, ischemia followed by reperfusion induced significant myocardial injury as denoted 
by the infarct size of mice. In contrast, AS-1 administration significantly decreased the ratio of infarct area/
risk area (IA/RA) by 33.8% (35.5 ±​ 0.73% vs. 53.6 ±​ 1.15%, n =​ 6, P <​ 0.05) compared with untreated I/R group. 
Injection of vehicle control did not alter I/R-induced myocardial infarction. There was no significant difference 
in the ratio of risk area/left ventricle (RA/LV). We also examined the role of AS-1 administration in cardiac func-
tion following myocardial I/R injury. Cardiac function was assessed by echocardiography after reperfusion. As 
shown in Fig. 2B, transient myocardial ischemia followed by reperfusion significantly decreased ejection fraction 
(EF%) by 40.8% (69.9 ±​ 3.11% vs. 41.4% ±​ 1.24%, n =​ 6 mice/group, P <​ 0.05) and fractional shortening (FS%) by 
50.9% (39.7 ±​ 3.08% vs. 19.5 ±​ 0.71%, n =​ 6 mice/group, P <​ 0.05) compared with sham group. In contrast, AS-1 
administration attenuated I/R-induced suppression of cardiac function. The EF% and FS% values in AS-1 group 
were significantly increased by 40.5% (58.19 ±​ 1.13% vs. 41.41 ±​ 1.24%, n =​ 6 mice/group, P <​ 0.05) and 40.3% 
(27.30 ±​ 0.74% vs. 19.46 ±​ 0.71%, n =​ 6 mice/group, P <​ 0.05) respectively, when compared with the untreated I/R 
group. Treatment with the vehicle did not alter I/R-induced cardiac dysfunction.

Parameter Mean ± SD

Cmax (mg/L)a 39.9434 ±​ 1.6862

AUC0-tn (mg/L*min)b 1132.0412 ±​ 133.7931

AUC0-∞(mg/L*min)c 1143.0905 ±​ 112.5708

t1/2 (min)d 10.6843 ±​ 0.7853

Table 1.  Pharmacokinetic parameters of AS-1 after interveinal injection of 35 mg/kg to Wistar Rats. 
aMaximum plasma concentration. bThe area under the plasma concentration time curve from 0 to tn. cThe area 
under the plasma concentration time curve from 0 to ∞​. dHalf time. n =​ 4.

Figure 2.  AS-1 decreased myocardial infarct size and improved cardiac function following myocardial 
ischemia/reperfusion injury. (A) Mice were treated with AS-1 or vehicle control, DMSO by i.p. injection 
immediately before reperfusion (4 h) after ischemia. Hearts were harvested and infarct size was determined 
by TTC staining. The infarct area (white) and the area at risk (red +​ white) from each section were measured 
using an image analyzer. Ratios of risk area vs. left ventricle area (RA/LV) and infarct area vs. risk area (IA/RA) 
were calculated and were presented in the graph. (B) AS-1 administration improved cardiac function following 
myocardial I/R. AS-1 or vehicle control, DMSO were injected immediately before reperfusion after ischemia 
(45 min). Cardiac function was examined 24 hours after I/R by echocardiography. Ejection fraction (EF%); 
fractional shortening (FS%). n =​ 6, #P <​ 0.05 compare to sham; *P <​ 0.05 compared with indicated groups.
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AS-1 treatment attenuates I/R induced the loss of membrane caveolae in the myocar-
dium.  Caveolae are lipid rich micro-domains present as distinct molecular platforms for the regulation of 
cytoprotection11. Mounting evidence suggests caveolae can participate in ischemia, anesthetic, and opioid 
induced cardioprotection against I/R injury5,6,12. We examined the effect of AS-1 administration on membrane 
caveolae formation in the myocardium following myocardial I/R injury (Fig. 3). Transmission electron micros-
copy revealed that myocardial I/R injury reduced the number of membrane caveolae in the myocardium, when 
compared with sham control hearts. In AS-1 treated hearts, the numbers of caveolae were significantly increased 
compared with I/R control hearts, indicating that AS-1 treatment may attenuate I/R-induced loss of caveolae in 
the myocardium.

AS-1 attenuates I/R induced a decrease in Cav-3 levels in buoyant membrane fractions 
(BFs).  Cav-3 is a coat protein of caveolae. To find out the effect of AS-1 treatment on Cav-3, we examined 
Cav-3 levels in the myocardium with and without I/R injury. To this end, proteins isolated from heart tissues 
were fractionated using discontinuous sucrose gradient centrifugation. The fractioned proteins were analyzed 
by western blot with a specific Cav-3 antibody. As shown in Fig. 4A, I/R decreased Cav-3 levels in fractions 4 to 
6 by 70.9% (17.78 ±​ 2.3% vs. 5.17 ±​ 1.9%, n =​ 6 mice/group, P <​ 0.05) compared with sham control. In contrast, 
AS-1 treatment partially blocked I/R-induced decreases in the levels of Cav-3 in the fractions of 4 to 6 by 1.7 fold 
(13.76 ±​ 3.2% vs. 5.17 ±​ 1.9%, n =​ 6 mice/group, P <​ 0.05). Figure 4B showed that neither I/R stimulation alone 
nor AS-1 treatment significantly altered the total Cav-3 levels in the myocardium. These results indicate that I/R 
injury may cause a re-distribution of Cav-3 from buoyant membrane fractions (BFs) to heavy fractions (HFs) 
without impacting overall Cav-3 levels and this process could be potentially blocked by AS-1 administration.

AS-1 attenuates hypoxia/reoxygenation (H/R) induced cell death of cardiomyoblasts.  To con-
firm that the effect of AS-1 on ischemic myocardium is not secondary to the influence of neurohumoral regu-
lation, cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). First, H9C2 cells were treated with or 
without AS-1 at the concentrations of 25–200 μ​M, which approximated the concentration of AS-1 in the heart. 
Cell viability was assessed by MTT assay and CCK8 assay. Figure 5A and B showed that AS-1 itself at the concen-
tration of up to 200 μ​M did not influence cell viability, indicating that AS-1 used in the present study did not have 
toxic artifacts. Importantly, AS-1 (50 μ​M) added immediately before the cells were subjected to reoxygenation 
(4 h) after hypoxia (1 h) significantly attenuated H/R induced cell injury by 29.8% (96.3 ±​ 7.58% vs. 74.2 ±​ 4.00%, 

Figure 3.  AS-1 modulated membrane caveolae after myocardial I/R injury. AS-1 was administered 
immediately before reperfusion after ischemia (45 min). Untreated I/R mice served as I/R control. Transmission 
electron microscopy showed I/R injury decreased the number of caveolae in the AAR of heart. AS-1 
administration attenuated the decrease in the number of caveolae in heart compared with I/R group.
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n =​ 4, P <​ 0.05) in MTT assay (Fig. 5C), and 18.3% (92.3 ±​ 1.1% vs. 78.7 ±​ 4.8%, n =​ 4, P <​ 0.05) in CCK8 assay 
(Fig. 5D), when compared to the DMSO control.

AS-1 attenuates H/R-induced decreases of Cav-3 in buoyant membrane fractions 
(BFs).  Caveolar microdomains (enriched with cholesterol and located in BFs), together with caveolins, 
organize interactions between signaling molecules with caveolins thus playing a protective role during cardiac 
ischemia/reperfusion injury. To provide a solid cellular basis for AS-1 in the re-distribution of Cav-3 in the heart 
we isolated neonatal cardiac myocytes and subjected them to H/R injury. We treated myocytes with AS-1 at 50 μ​
M or DMSO before the cells were subjected to reoxygenation (4 h) after hypoxia (1 h). After reoxygenation, the 
cells were harvested and cellular proteins were isolated and fractionated using a discontinuous sucrose gradi-
ent centrifugation. The fractioned proteins were subjected to immunoblot with a specific anti-Cav-3 antibody. 
Figure 6 showed that H/R significantly decreased the levels of Cav-3 in fractions 4 through 6 (BFs) by 56.2% 
(26.64 ±​ 4.02% vs. 11.68% ±​ 2.03%, n =​ 4, P <​ 0.05). In contrast, AS-1 treatment markedly attenuated H/R 
induced decreases in the levels of Cav-3 in fractions 4–6 by 101.0% (22.47 ±​ 2.17% vs. 11.68% ±​ 2.03%, n =​ 4, 
P <​ 0.05). Figure 6B showed that H/R stimulation or AS-1 treatment did not alter total Cav-3 expression in neo-
natal cardiac myocytes. These data indicated that AS-1 treatment may induce cellular redistribution of Cav-3.

The protection of AS-1 was dependent on caveolae and Cav-3.  To examine whether AS-1 medi-
ated protection against H/R-induced cell injury was through the caveolae dependent mechanism, we treated the 
cells with methyl-β​-cyclodextrin (MCD) in order to disrupt caveolae13 before the cells were treated with AS-1. 
Figure 7A and B showed disruption of caveolae by MCD abolished AS-1-induced protection against H/R-induced 
injury in H9C2 cardiomyocytes: the levels of cell viability and LDH release in AS-1 plus MCD treated cells were 
comparable with H/R-stimulated cells.

To confirm the contribution of caveolae in AS-1 protection, we used TUNEL staining to detect cell apoptosis 
in neonatal rat cardiomyocytes post-H/R injury. Compared with untreated normoxic cells, TUNEL-positive cells 
were increased after H/R injury and AS-1 treatment reduced the number of apoptotic cells. However, the protec-
tion of AS-1 was abolished in cardiomyocytes that were pre-treated with MCD. These data suggest that caveolae 
are required for AS-1 induced cardioprotection.

To further extend the connections between Cav-3 and AS-1 effect on H/R injury, we tested whether protection 
promoted by AS-1 would depend, to some extent, on Cav-3. To this end, we used small inference RNA (siCav3) to 
knock down the expression of Cav-3. Transfection of siCav-3 reduced the level of Cav-3 by 76.7% compared with 

Figure 4.  AS-1 attenuated I/R induced distribution of Cav-3 in the myocardium. The mice that were 
subjected to myocardial ischemia (45 min) were treated with AS-1 (n =​ 6) or vehicle control, DMSO, (n =​ 6) 
by i.p. immediately before reperfusion (4 h). Excised hearts underwent sucrose density fractionation. (A and 
C) AS-1 increased the enrichment of Cav-3 in BFs. Representative Western blots shows distribution of Cav-3. 
Cav-3 was decreased in BFs after I/R (representative immunoblots are shown), AS-1 attenuated the decrease of 
Cav-3 in BFs induced by I/R, and confirmed by densitometry normalized to total fraction amounts (C). Cav-3 
densitometric results were combined into light fractions 4–6 and heavy fractions 9–12. (B and D) Hearts were 
harvested for the preparation of total proteins and the expression of Cav-3 was examined by Western blot. I/R 
injury or AS-1 treatment did not alter the expression of Cav-3 (B). n =​ 6, #P <​ 0.05 compare to sham; *P <​ 0.05 
compared with indicated group.
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siNC group (data not shown). Then, we used PI and Annexin-V staining to detect cell apoptosis post H/R injury 
in cardiomyocytes. Figure 8 showed that the PI negative/Annexin-V positive cells were significantly increased 
post H/R injury, and AS-1 treatment suppressed cell apoptosis. Knocking down Cav-3 expression with siCav-3 
before AS-1 administration abolished the suppression of AS-1 on apoptosis of cardiomyocytes induced by H/R 
injury. These data imply that Cav-3 is an important component for AS-1-mediated protection of cardiomyocytes 
from H/R injury.

Discussion
The present study demonstrates for the first time that a TIR/BB-Loop mimetic AS-1 modulates caveolae and 
redistribution of Cav-3 in plasma membrane following I/R injury in vivo and in vitro. Specifically, we observed 
that AS-1 administration attenuated I/R-induced decreases in the amount of caveolae and BF-associated Cav-3 
levels in the myocardium. Similar results were observed in vitro studies using cardiomyocytes subjected to H/R 
stimulation. Further, disruption caveolae by MCD or knocking down Cav-3 with siCav-3 completely abolished 
AS-1 mediated protection against H/R-induced cell injury. Our data suggest that the caveolae are essential for 
AS-1 induced protection against myocardial I/R injury.

We developed a sensitive, rapid, and selective LC-MS/MS method for analysis of pharmacokinetics of AS-1 
in the blood after administrating it to rats. We observed that following i.v injection, AS-1 appeared in the blood 
quickly and then gradually decreased in the circulation. Tissue distribution showed that AS-1 was taken by the 
heart and located within the cells. This is the first report showing that AS-1 can be taken quickly by tissues.

We have previously reported that administration of a TIR/BB-Loop mimetic AS-1 immediately before reper-
fusion after ischemia protected the myocardium from I/R injury via suppression of NF-κ​B binding activity and 
inflammatory cytosine levels4. In the present study, we found that myocardial ischemia followed by reperfusion 
for 4 hours altered the morphology of the plasma membrane and decreased the number of caveolae in the myo-
cardium. Moreover, I/R injury resulted in translocation of Cav-3 from BFs, one of the main components of car-
diomyocytes caveolae, to HFs. Recent studies have shown that stresses can induce redistribution of Cav-3 from 
buoyant to heavy fractions without changing the overall expression levels of Cav-3 in cardiomyocytes and car-
diomyoblasts14,15. These findings suggest that I/R injury couples the alteration of molecular signaling to changes 
in caveolae and Cav-3 distribution. We observed in the present study that administration of AS-1 immediately 
before reperfusion after ischemia significantly attenuated I/R-induced decreases in the numbers of caveolae in 
the plasma membrane and distribution of Cav-3. Caveolae and Cav-3 can anchor and regulate the function of 
proteins that modulate a variety of cellular processes16 and signal transduction17,18. In particular, Cav-3 plays an 
important role in ischemic preconditioning (IPC) induced cardiac protection in I/R injury19. We observed that 

Figure 5.  MTT and CCK8 assay on H9C2 cells. No toxicity of AS-1 were observed in H9C2 cells. H9C2 cells 
were treated with different concentrations of AS-1 (0–200 μ​mol/L). Cell injury was assessed by MTT assay 
(A) and CCK8 assay (B). AS-1 protects cells from H/R-induced injury. H9C2 cells were subjected to hypoxia 
for 1 hour followed by reoxygenation for 4 hours; AS-1 (50 μ​M) or DMSO were added into the cells before 
reoxygenation. The cells were subject to MTT assay (C) and CCK8 assay (D). n =​ 4, #P <​ 0.05 compare to 
control; *P <​ 0.05 compared with indicated group.
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disruption of caveolae by MCD and Cav-3 knockdown abolished the protection of AS-1 against H/R-induced cell 
injury, suggesting that loss of caveolae and/or re-distribution of Cav-3 in BFs could be an important mechanism 
for AS-1 induced protection against myocardial I/R injury.

In our previous study4, we reported that myocardial I/R markedly increased the association between IL-1R 
and myeloid differentiation primary response gene 88 (MyD88), which was associated with increased myocardial 
NF-κ​B nuclear translocation and binding activity, and enhanced the levels of inflammatory cytokines and adhe-
sion molecules. We also reported that AS-1 administration attenuated pressure overload-induced increases in the 
levels of phospho-p38/p38 and phospho-ERK/ERK in the myocardium20. Interestingly, increased ERK activation 
in BFs during I/R was accompanied by a reduction in Cav-3 levels in these fractions. It is possible, therefore, that 
activation of the ERK isoforms in the light fractions may interact with Cav-3, resulting Cav-3 re-distribution and 
contributing to I/R injury21,22. Mechanistically, following H/R stimulation, MyD88 is recruited to TIR domain 
followed by formation of a complex with IRAK and TRAF6, leading to activation of MAPK family23,24. Activated 
MAPK can associate with Cav-3 to regulate downstream signaling, resulting in re-distribution of Cav-3 from BFs 
to HFs while simultaneously down-regulating the number of caveolae in plasm membrane. In the present study, 
we found that caveolae and Cav-3 are required for AS-1 induced protection. It is possible that AS-1 administra-
tion prevented I/R-induced association between IL-1R and MyD88, resulting in attenuation of p38 MAPK and 
ERK phosphorylation and redistribution of Cav-3 in BFs as well as the loss of caveolae from plasma membrane 
of cardiomyocytes.

We realized that there are some limitations in this study. Specifically, adult mice cardiomyocytes would have 
been a better choice for experiments instead of neonatal cardiomyocytes as used here. Moreover, a small-molecule 
compound that could reduce the expression of Cav-3 in BFs would be helpful to find out the role of Cav-3 redis-
tribution on AS-1 cardioprotection. These pitfalls hopefully will be avoided in our future research.

In summary, we demonstrate that administration of AS-1 protects the myocardium from I/R injury and car-
diomyocytes against H/R-induced injury. The mechanisms involve the remodeling of Cav-3-containing caveolae. 
Our data suggest that there is a link between IL-1R-mediated MyD88-dependent signaling and caveolae and 
Cav-3 in BFs.

Materials and Methods
Animals.  Male C57BL/6 mice (7–8 weeks old) and Male Wistar Rats (250–280 g) were obtained from the 
Model Animal Research Center of Nanjing University (Nanjing, China). The animals were housed with free 
access to food and water. Experiments involving animals were conformed to the Guide for the Care and Use 

Figure 6.  AS-1 attenuated the distribution of Cav-3 in neonatal cardiac myoctyes post H/R injury. Neonatal 
cardiac myocytes were treated with AS-1 (50 μ​M) or vehicle control, DMSO immediately before reoxygenation 
(4 h) after hypoxia in presence or absence of MCD (2 μ​M). Whole myocytes underwent sucrose density 
fractionation. (A and C) AS-1 increased the enrichment of Cav-3 in BFs. Representative Western blots depicting 
distribution of Cav-3. Cav-3 was decreased in BFs after H/R (representative immunoblots are shown), AS-1 
attenuated the decrease of Cav-3 in BFs induced by H/R, and confirmed by densitometry normalized to total 
fraction amounts (C). Cav-3 densitometric results were combined into light fractions 4–6 and heavy fractions 
9–12. (B and D) Whole cells were harvested for the preparation of total proteins and the expression of Cav-3 
was examined by Western blot. H/R injury or AS-1 treatment did not alter the expression of Cav-3 (B). n =​ 4, 
#P <​ 0.05 compare to control; *P <​ 0.05 compared with indicated groups.
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of Laboratory Animals published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). 
All aspects of the animal care and experimental protocols were approved by the Nanjing Medical University 
Committee on Animal Care.

myocardial I/R model in mice.  The mouse model of myocardial I/R injury was induced by ligation of 
LAD as described previously4,25. Briefly, male mice were anesthetized with a mixture of ketamine (100 mg/kg i.p.) 
and xylazine (6 mg/kg i.p.) and ventilated. When adequacy of anesthesia was monitored by observation of slow 
breathing, loss of muscular tone, and no response to surgical manipulation, the hearts were exposed and the LAD 
coronary artery was ligated with a 6–0 silk ligature over a 1-mm polyethylene tube (PE-10). After completion of 
45 min of occlusion, the coronary artery was reperfused, the thorax was closed, and the animals were extubated. 
Control male mice underwent a sham operation where the ligature around the LAD was not tied. Burprenox 
(0.36 mg/kg, i.m.) was employed as analgesia post-operative. AS-1 group mice were treated with AS-1 (50 mg/kg 
body weight) by intraperitoneal injection immediately before reperfusion after 45 min of ischemia. DMSO served 
as vehicle control.

Infarct size measurement.  Infarct size was determined by staining with triphenyltetrazolium chloride 
(TTC; Sigma-Aldrich) as described in our previous study4. Briefly, the hearts were removed and perfused with 
saline on a Langendorff system, followed by staining with 1% Evans blue (n =​ 6 mice/group). Each heart was 
sliced into 1-mm slices. The slices were counterstained with 1% TTC prepared with 200 mM Tris buffer (pH7.8) 
for 15 min at 37 °C. Viable nonischemic myocardium stains blue with Evans blue. Ischemic myocardium, which is 
still viable, stains red with TTC, whereas the necrotic myocardium does not stain and appears pale white. Images 
were analyzed by an image analyzer.

Echocardiography.  Echocardiography was performed with a two-D guide M-mode transthoracic echocar-
diographic examination (General Electric Co, Fairfield, Conn) as described in our previous study4,25. Mice (n =​ 6 

Figure 7.  Disruption of caveolae abolished AS-1 induced protection against H/R-induced cell injury. H9C2 
were treated with AS-1 (50 μ​M) before reoxygenation (4 h). Cell viability was assessed by MTT (A) and LDH 
release (B) in H9C2 treated with normoxia or H/R in presence or absence of MCD (2 μ​M). Normoxia untreated 
cells severed as control. n =​ 4, #P <​ 0.05 compare to control; *P <​ 0.05 compared with indicated groups. 
Neonatal rat cardiomyoctyes were treated with AS-1 (50 μ​M) before reoxygenation (4 h). Representative pictures 
of TUNEL (red) and nuclear (DAPI, blue) staining (C) treated with normoxia or H/R in presence or absence of 
MCD (2 μ​M).
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in each group) were subjected to ischemia (45 min) followed by repercussion for 24 hrs. All measurements were 
made by one observer who was blinded with respect to the identity of the tracings. All data were collected from 
10 cardiac cycles.

LC-MS/MS conditions.  Analyses were performed by an Alliance 2695 LC system (Waters, Milford, MA, 
USA) coupled with a triple-quadrupole tandem Quattro Micro mass spectrometer (Waters, Milford, MA, USA). 
Instrumental control is the Mass Lynx 4.1 software using for acquisition and processing of the data. The LC 
separation was performed on an Agilent Zorbax SB-C18 column (150 2.1 mm i.d. 5 mm, Agilent Technologies, 
Wilmington, DE, USA) by the mobile phase consisting of acetonitrile and deionized water (40:60, v/v) containing 
10 mM at a flow rate of 0.8 mL/min with a security guard column (12.5 2.1 mm i.d. 5 mm, Agilent Zorbax SB-C18, 
DE, USA). The autosampler temperature was maintained at 15 °C. The total LC run time was 10 min with the 
column temperature kept at 30 °C.

The typical operating source condition for MS detector with an electrospray ionization (ESI) interface in neg-
ative ion mode. The detertion parameters were optimized as follows: capillary voltage, 2.7 kV; cone voltage, 45 V; 

Figure 8.  AS-1 protectes cardiomyocytes from H/R injury denpendent on Caveolin-3. Neonatal rat 
cardiomyoctyes were treated with AS-1 (50 μ​M) before reoxygenation (4 h). The cells treated with normoxia or 
H/R in presence or absence of MCD (2 μ​M) were stained by annexin V-FITC/propidium iodide (PI) and were 
analyed by flow cytometer. The number of apoptotic cells (annexin V positive, PI negetive) was presented in the 
graph. n =​ 5, #P <​ 0.05 compare to control; *P <​ 0.05 compared with indicated groups.
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source temperature, 110 °C; desolvation temperature, 350 °C; desolvation gas flow (nitrogen), 450 L/h; collision 
energy 28 V for limonin and 25 V for nimodipine; argon was used as the collision gas with the gas pressure of 
3.0 ×​ 10−3 mbar.

Sample preparation for pharmacokinetics of AS-1.  Aliquots of 100 μ​L plasma and 10 μ​L of IS (inter-
nal standard, we use tinidazole as internal standard in this experiment) (0.967 mg/mL) were added into a 1.5 mL 
Eppendorf tube as previously described26. After vortex-mixing for 30 s, 500 μ​L ethyl acetate was added. Then 
vortex-mixed for 5 min. The organic phase was transferred to polypropylene tubes by centrifugation at 10,000 g 
for 10 min. After evaporation to dryness in the centrifugal thickener (Centrivap console, Labconco Co., USA) at 
50 °C for 1 hr, the residue was reconstituted in 100 μ​L methanol and vortexed for 5 min, and then centrifuged for 
10 min at 12,000 g. An 80 μ​L supernatant was injected onto the LC-MS/MS system for analysis.

Pharmacokinetic examination of AS-1.  The preclinical pharmacokinetic study of AS-1 was based on 4 
healthy Wistar Rats. AS-1 at a dose of 35 mg/kg was injected to rats from tail vein. Blood samples of 400 μ​L were 
collected via a capillary in the venous sinus of orbit into heparinized tubes at 0, 5, 10, 20, 30, 45, 60, 90, 120, 180, 
and 240 min after single injection of AS-1. Plasma was collected by centrifugation for 10 min at 3,000 g and trans-
ferred to labeled plastic vials at 20 °C until analysis was carried out.

Electron Microscopy.  Whole hearts were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer over-
night followed by post-fixed with 1% OsO4 in 0.1 M cacodylate buffer (1 h) and embedded as monolayers in 
LX-112 (Ladd Research, Williston, Vt) as described previously7. Sections were stained in uranyl acetate and lead 
citrate before observation with an electron microscope (JEOL 1200 EX-II, JEOL USA, Peabody, Mass; or Philips 
CM-10, Philips Electronic Instruments, Mahwah, NY). Caveolae were identified by their characteristic flask 
shape, size (50–100 nm), and location at or near the plasma membrane. Random sections were taken by an elec-
tron microscopy technician blinded to the treatments.

In vitro experiments.  H9C2 cells were purchased from Shanghai cellular institution and preserved and pas-
saged by our laboratory. Neonatal rat ventricular myocytes were prepared from 1 to 2 day-old neonatal Sprague–
Dawley rats as described previously25. The cells were incubated in Dulbecco’s Modified Eagle Medium (DMEM, 
Invitrogen Corporation, USA) supplemented with 10% (v/v) fetal bovine serum and 2 mmol/L L-glutamine, at 
37 °C and 5% CO2 in humidified incubator. Bromodeoxyuridine (0.1 mM) was added into cultured neonatal rat 
ventricular myocytes 36 h after incubation prevent proliferation of cardiac fibroblasts. For induction of cellular 
hypoxia, cells were replaced by DMEM without glucose and incubated at 37 °C with 5% CO2, 1% O2 and 94% 
N2 in a hypoxia chamber (Thermo, HERA cell 150i) for 1 hour followed by incubation in normal incubator for 
4 hours.

Cytotoxicity assessments (MTT, CCK8 and LDH release assay).  MTT was dissolved in DMEM at 
the concentration of 5 g/L, filtered for sterilization. 25 μ​l of MTT solution or 10 ul CCK8 solution was added to 
each well containing cells (96-well microtiter plate). The plate was then incubated in a CO2 incubator at 37 °C for 
4 hours and measured at 450 nm for CCK8 assay. For MTT assay, the media was removed, and 200 μ​l of dimethyl 
sulfoxide (DMSO) was instilled to each well, pipetted to dissolve crystals, and measured at 492 nm. The cells were 
divided into six groups; the concentration of AS-1 is 0 served as blank contrast, DMSO dissolvent group served as 
vehicle control. The absorbencies of different concentration of AS-1 solutions (25–200 μ​mol/L) were also meas-
ured. The LDH concentration in the culture medium was spectrophotometrically assayed using a kit from Pierce 
(catalog number 88954).

Preparation of Sucrose Density Membrane Fractionation.  Whole hearts were harvested, minced 
with a razor blade, homogenized for 30 s, and fractionated with sucrose density gradients as previous reported21. 
Twelve 1-mL fractions were collected, starting from the top of the gradient. Fractions 4 through 6 were buoyant 
membrane fractions (BFs) enriched in caveolins and proteins associated with caveolins. Fractions 9 through 12 
were defined as heavy fractions (HFs). For Western blots, an equal amount of total protein from each fraction 
(10 μ​g) were analyzed.

Immunoblot analysis.  The cytoplasmic proteins (60 μ​g), whole heart lysate proteins (60 μ​g), the immuno-
precipitation samples and fractions from sucrose density centrifugation were separated by SDS-PAGE and trans-
ferred onto polyvinylidene difluoride (PVDF) membranes (Amersham Biosciences) as described previously25. 
The membranes were incubated with primary antibodies (Cav-3 (Becton, Dickinson and Company) and GAPDH 
(Santa Cruz Biotechnology)) and followed by incubation with peroxidase-conjugated secondary antibodies. The 
signals were detected with the ECL system (Pierce). The signals were quantified by scanning densitometry with 
the Image J analysis system.

Small interfering RNA (siRNA) transfection.  To determine the role of Cav-3 in H/R injury, we 
developed siRNA to suppressing the expression of Cav-3, which was constructed and generated by Ribobio 
(Guangzhou, China). The target sense sequence: 5′​-GCTACCTGATTGAGATCCA-3′​. The siRNA transfection 
efficiency was confirmed by the Lipofectamine 3000 transfection commercial kit(Invitrogen, Shanghai, China). 
Neonatal rat ventricular myocytes were plated and after 36 hours cells were put on opti-MEM and subsequently 
transfected with siCav3 or siNC (negative control) for 4 h. Then opti-MEM was replaced by DMEM supple-
mented with 10% FBS. Subsequent experiments were carried out 48 h later.



www.nature.com/scientificreports/

1 1SCIeNtIfIC ReporTS | 7:44638 | DOI: 10.1038/srep44638

TUNEL Assay for Apoptosis.  The TUNEL (terminal deoxynucleoitidyl transferase-mediated biotinylated UTP 
nick end labeling) assay was performed by in situ cell death detection kit (Roche, USA). The cardiomyocytes were 
washed by PBS three times and subsequently fixed for 60 min in 4% paraformaldehyde, pH 7.4, at room temperature. 
After being washed by PBS three times, the cardiomyocytes were permeabilized with 0.1% TritonX-100 in PBS for 
10 min at room temperature. After being washed by PBS three tmes, apoptotic cells were detected by TUNEL staining 
following the manufacturer’s instructions. Finally, cardiomyocytes were counterstained with DAPI (Sigma, USA) for 
5 min, at room temperature. Picture was taken in a blinded manner and the experiment was repeated for three times.

Flow cytometer for apoptosis.  Neonatal rat cardiomyocytes were washed three times with PBS, and lifted 
from the plates with 0.25% trypsin (invitrogen). Cells were washed with PBS three times, resuspended in PBS, 
and stained with 1 μ​g/mL PI (propidium iodide )(Sigma,USA) and annexin V (FITC) for 5 minutes, at room tem-
perature, cells were analyzed on a flow cytometer. The PI and FITC-annexin-V integrals estimated the percentage 
of total cells that were alive (PI negative, annexin V negative) in early apoptosis (PI negative, annexin V positive) 
and necrosis (PI positive, annexin V negative)27.

Statistical analysis.  Data are presented as means ±​ SD. Comparisons between groups were performed using 
one-way ANOVA, and Tukey’s procedure for multiple range tests was performed. Value of P <​ 0.05 was consid-
ered to be significant.
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