192 research outputs found

    Stability change of Fourth-Order Resonance with application to Multi-Turn Extraction Schemes

    Get PDF
    Recently, a novel multi-turn extraction scheme was proposed, based on particle trapping inside stable resonances. Numerical simulations and experimental tests conirmed the feasibility of such a scheme for low order resonances. While the 3rd order resonance is generically unstable and those higher than 4th order are generically stable, the 4th order resonance can be either stable or unstable depending on the details of the system under consideration. By means of the normal form approach a general formula to control the stability of the 4th order resonance is derived. Numerical simulations confirm the analytical results and show that by crossing the unstable 4th order resonance the region around the centre of phase space is depleted and particles are trapped only in the four stable islands. This indicates that a four-turn extraction could be envisaged based on this technique

    Non relativistic Broad Band wake fields and potential-well distortion

    Get PDF
    The study of the interaction between a particle beam and wake fields is usually based on the assumption of ultra relativistic beams. This is not the case, for example, for the Proton Synchrotron Booster(PSB), in which protons cover the energy range. There are some examples in literature which derive nonultra relativistic formulae for the resistive wall impedance. In this paper we have extended the Broad-Band resonator model, allowing the impedance to have poles even in the upper half complex plane, in order to obtain a wake function different from zero for. The Haissinski equation has been numerically solved showing longitudinal bunch shape changes with. In addition some longitudinal bunch profile measurements, taken for two different bunch intensities at the PSB, are shown

    Collective Effects in the CLIC Damping Rings

    Get PDF
    Possible performance limitations coming fromcollective effects in the CLIC damping rings are the subject of this paper. In particular, the consequences of space charge, due to the very high beam brilliance, and of the resistive wall impedance, due to the locally very small beam pipe, are considered potentially dangerous in spite of the high beam energy. Space charge has been studied in detail with the HEADTAIL code, which was modified in order to take into account a finer lattice structure. This study also includes requirements on the broad band impedance of the damping rings and ion effects in the electron ring (electron cloud in the positron ring is treated in a companion paper). Its goal is to identify all the potential design constraints determined by these phenomena

    Coherent tune shift and instabilities measurements at the CERN Proton Synchrotron Booster

    Get PDF
    To understand one of the contributions to the intensity limitations of the CERN Proton Synchrotron Booster (PSB) in view of its operation with beams from Linac 4, the impedance of the machine has been characterized. Measurements of tune shift as a function of the intensity have been carried out in order to estimate the low frequency imaginary part of the impedance. Since the PSB is a low energy machine, these measurements have been done at two different energies, so as to enable us to disentangle the effect of the indirect space charge and resistive wall from the contribution of the machine impedance. An estimation of the possible resonant peaks in the impedance spectrum has been made by measuring a fast instability in Ring4

    Recovery agenda for sustainable development post COVID-19 at the country level: Developing a fuzzy action priority surface

    Get PDF
    As a response to the urgent call for recovery actions against the COVID-19 crisis, this research aims to identify action priority areas post COVID-19 toward achieving the targets of the sustainable development goals (SDGs) within the 2030 Agenda for Sustainable Development launched by the United Nations (UN). This paper applies a mixed-method approach to map the post-COVID-19 SDGs targets on a fuzzy action priority surface at the country level in Iran, as a developing country, by taking the following four main steps: (1) using a modified Delphi method to make a list of the SDGs targets influenced by COVID-19; (2) using the best–worst method, as a multi-criteria decision-making tool, to weight the COVID-19 effects on the SDGs targets achievement; also (3) to weight the impact of the SDGs targets on the sustainable development implementation; and finally (4) designing a fuzzy inference system to calculate the action priority scores of the SDGs targets. As a result, reduction of poor people proportion by half (SDG 1.2), development-oriented policies for supporting creativity and job creation (SDG 8.3), end the pandemics and other epidemics (SDG 3.3), reduction of deaths and economic loss caused by disasters (SDG 11.5), and financial support for small-scale enterprises (SDG 9.3) were identified as the highest priorities for action, respectively, in the recovery agenda for sustainable development post COVID-19. The provided fuzzy action priority surface supports the UN’s SDGs achievement and implementing the 2030 Agenda for Sustainable Development in Iran. It also serves as a guideline to help the government, stakeholders, and policy-makers better analyze the long-term effects of the pandemic on the SDGs and their associated targets and mitigate its adverse economic, social, and environmental consequences. Graphical abstract: [Figure not available: see fulltext.

    Recovery agenda for sustainable development post COVID-19 at the country level: Developing a fuzzy action priority surface

    Get PDF
    As a response to the urgent call for recovery actions against the COVID-19 crisis, this research aims to identify action priority areas post COVID-19 toward achieving the targets of the sustainable development goals (SDGs) within the 2030 Agenda for Sustainable Development launched by the United Nations (UN). This paper applies a mixed-method approach to map the post-COVID-19 SDGs targets on a fuzzy action priority surface at the country level in Iran, as a developing country, by taking the following four main steps: (1) using a modified Delphi method to make a list of the SDGs targets influenced by COVID-19; (2) using the best–worst method, as a multi-criteria decision-making tool, to weight the COVID-19 effects on the SDGs targets achievement; also (3) to weight the impact of the SDGs targets on the sustainable development implementation; and finally (4) designing a fuzzy inference system to calculate the action priority scores of the SDGs targets. As a result, reduction of poor people proportion by half (SDG 1.2), development-oriented policies for supporting creativity and job creation (SDG 8.3), end the pandemics and other epidemics (SDG 3.3), reduction of deaths and economic loss caused by disasters (SDG 11.5), and financial support for small-scale enterprises (SDG 9.3) were identified as the highest priorities for action, respectively, in the recovery agenda for sustainable development post COVID-19. The provided fuzzy action priority surface supports the UN’s SDGs achievement and implementing the 2030 Agenda for Sustainable Development in Iran. It also serves as a guideline to help the government, stakeholders, and policy-makers better analyze the long-term effects of the pandemic on the SDGs and their associated targets and mitigate its adverse economic, social, and environmental consequences. Graphical abstract: [Figure not available: see fulltext.

    In situ remediation of contaminated marinesediment: an overview

    Get PDF
    Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform

    High Intensity Beams from the CERN PS Booster

    Get PDF
    The CERN Proton Synchrotron Booster (PSB) has been running for more than 30 years. Originally designed to accelerate particles from 50 to 800 MeV, later upgradedto an energy of 1 GeV and finally 1.4 GeV, it is steadily being pushed to its operational limits. One challenge is the permanent demand for intensity increase, in particular for CNGS and ISOLDE, but also in view of Linac4. As it is an accelerator working with very high space charge during the low energy part of its cycle, its operational conditions have to be precisely tuned. Amongst other things resonances must be avoided, stop band crossings optimised and the machine impedance minimised. Recently, an operational intensity record was achieved with >4.25Ă—1013 protons accelerated. An orbit correction campaign performed during the 2007/2008 shutdown was a major contributing factor to achieving this intensity. As the PSB presently has very few orbit correctors available,the orbit correction has to be achieved by displacing and/or tilting some of the defocusing quadrupoles common to all 4 PSB rings. The contributing factors used to optimise performance will be reviewed
    • …
    corecore