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STABILITY CHANGE OF FOURTH-ORDER RESONANCE WITH APPLICATION
TO MULTI-TURN EXTRACTION SCHEMES

Recently, a novel multi-turn extraction scheme was proposed, based on particle trapping inside stable
resonances. Numerical simulations and experimental tests conirmed the feasibility of such a scheme for low
order resonances. While the 3rd order resonance is generically unstable and those higher than 4th order are
generically stable, the 4th order resonance can be either stable or unstable depending on the details of the
system under consideration. By means of the normal form approach a general formula to control the
stability of the 4th order resonance is derived. Numerical simulations confirm the analytical results and
show that by crossing the unstable 4th order resonance the region around the centre of phase space is
depleted and particles are trapped only in the four stable islands. This indicates that a four-turn extraction
could be envisaged based on this technique.
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Abstract

Recently, a novel multi-turn extraction scheme was pro-
posed, based on particle trapping inside stable resonances.
Numerical simulations and experimental tests confirmed
the feasibility of such a scheme for low order resonances.
While the 3rd order resonance is generically unstable and
those higher than 4th order are generically stable, the 4th
order resonance can be either stable or unstable depend-
ing on the details of the system under consideration. By
means of the normal form approach a general formula to
control the stability of the 4th order resonance is derived.
Numerical simulations confirm the analytical results and
show that by crossing the unstable 4th order resonance the
region around the centre of phase space is depleted and par-
ticles are trapped only in the four stable islands. This indi-
cates that a four-turn extraction could be envisaged based
on this technique.

INTRODUCTION

In recent years, a novel type of extraction based on par-
ticle trapping inside stable islands of the horizontal phase
space was proposed [1]. The beam manipulation is intrin-
sically linked with non-linear beam dynamics. The beam is
swept through a stable non-linear resonance and whenever
the crossing is adiabatic, some particles can be trapped in-
side the stable islands and then transported towards higher
amplitudes. At this stage the extraction proper is per-
formed.

Such an extraction mode is primarily aimed at replac-
ing the current Continuous Transfer extraction [2] from
the CERN Proton Synchrotron (PS) to the Super Proton
Synchrotron (SPS) as an improved extraction mode, in the
sense of losses (that are highly reduced, if not completely
suppressed) and of injection matching. Parenthetically, a
long measurement campaign was performed [3] to assess
the performance of the proposed method, and a project
setup for the implementation of such an extraction in the
PS machine [4].

Further studies, however, showed that the method has a
much broader scope, being applicable to resonances other
that the 1/4, which is the one selected for the CERN-
specific application [5]. More than this, the approach can
be time-reversed and used for a novel injection type [6].

In the case of a stable resonance of order n, n+ 1 beam-
lets are generated, n corresponding to the islands and one
to the beam core part remaining after the trapping process.
The beamlets at the end of the trapping process form two

disconnected structures in phase space: a ribbon closing
up after n turns around the machine circumference and the
part, one-turn long, at the centre of phase space.

At the level of the extraction system proper, a set of kick-
ers should generate a fast bump constant over the n + 1
extraction turns, noting that the kickers’ strength should be
increased for ejecting the last turn. This might be a limiting
factor, imposing higher demands on the strength require-
ments. In this respect, an unstable resonance, for which
there is basically no beam left at the centre of phase space,
might be advantageous.

In Ref. [5] the case of the third-order resonance was stud-
ied. However, one could also consider the fourth-order res-
onance and make it unstable so to generate a four-turn ex-
traction scheme. This can be done by using the tool of Nor-
mal Forms. The application of such a tool to the non-linear
betatronic motion was proposed in [7], while a review can
be found in [8]. This approach can be used to change the
stability type of a resonance [9]. The theory and the simple
model used for this study will be presented together with
some results of numerical simulations.

THEORY AND MODEL

To simulate the adiabatic capture process the composi-
tion of two symplectic maps is used:
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where (x, px) are phase space coordinates, R(ϕ) is a rota-
tion matrix of an angle ϕ, k3,1 and k3,1 are the strengths
of two octupolar elements. Without any loss of generality
the sextupolar strength can be set equal to one. During the
iteration of the map the value of ψ1 is kept constant letting
ψ2 varying with n so to set ω = 2π ν = ψ1 + ψ2 to the
actual value of the linear frequency of the system.

Via Normal Forms theory applied to polynomial
maps [8] it is known that the 1/4 resonance could be ei-
ther stable on unstable, depending on the value of the first
amplitude detuning term, as the Hamiltonian can be written

H(θ, ρ) = ε ρ+ Ω2 ρ
2 +Aρ2 cos 4θ + O(ρ3), (2)

where (θ, ρ) stand for the angle-action variable and Ω2 is
the first amplitude-dependent detuning term.

A general recurrence to evaluate Ω2 in the case of the



composition of M polynomial maps of the form
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is described in Ref. [9]. This case represents a realistic
model of a machine, whereM sextupoles and octupoles are
installed. Of course, for the case ofM maps, ω =

∑M

i=0 ψi

is the global tune.
For the model used in the numerical simulations pre-

sented in this paper the values ψ1/2π = 0.62, k3,1 = 1,
and k3,1 = −1/3 were used. The variable k3,1 was used to
set Ω2 = 0 during the crossing of the 1/4 resonance, which
corresponds to changing its stability type.

A typical sequence of phase space topology obtained
during the resonance crossing process is shown in Fig. 1.
By changing the tune the separatrices related to the hyper-
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Figure 1: Phase portrait of the dynamical system Eq. (1) as
the linear tune ν is changed and approaching the resonant
value ν = 1/4 from above.

bolic fixed points shrink towards the origin, thus making it
unstable.

NUMERICAL SIMULATIONS

The numerical simulations have been performed using
the model of Eq. (1) and considering a Gaussian distribu-
tion of particles in the horizontal phase space space (x, px)

ρ(x, px) =
1

2πσ2
e−

x
2+p

2
x

2σ2 . (4)

The tune ν(n) is changed with time as a polynomial func-
tion fk of order k, where the key parameters are νs, νr,
and νf , the starting, resonant, and final tune values, respec-
tively. n1, and N represent the turn at which the resonance
is crossed and the total number turns involved in the cap-
ture process. The order of the polynomial can change be-
fore and after n1 with the constraint that ν ′(n1) = 0 so

to achieve a smooth transition at exact resonance crossing.
Henceforth, we refer to the i−j curve if we have a polyno-
mial curve of ith order before the resonance crossing and a
jth polynomial curve after the resonance crossing.

Typically, 2×106 particles were tracked for about 5×104

iterations of the map, with νs = 1.253, νr = 1.25,
and νe = 1.248, while the resonance crossing occurs for
n1 = 3.5 × 104. An example of splitting process is shown
in Fig. 2 The corresponding tune variation is reported in
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Figure 2: Evolution of the initial distribution during the
resonance crossing process.

Fig. 3. While the separatrices collapse towards the origin,
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Figure 3: Tune variation used for the splitting presented in
Fig. 2. The tune curve is of type 2 − 3.

the particles are pushed towards the islands and trapped in-
side.

In Figs. 4, 5 the results concerning the fraction of trapped
particles in the resonance island and the relative emittances
as a function of the σ of the initial distribution are shown.
For the particles left close to the origin of the phase space
the so-called halo parameter h [11] defined as

h =
〈x4〉

〈x2〉2
− 2 (5)

is shown in Fig. 4. The bigger is the σ the greater is the
fraction of beam trapped into the resonance islands. This
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Figure 4: Fraction of trapped particles as a function of the
initial sigma. Two types of tune curves are used: 1−1 (left)
and 2 − 3 (right). The value of the factor h for the beam
core is also given.

trend is valid for every type of tune curve. On the other
hand it is also clearly seen that the higher the order of the
polynomial the smaller is the fraction of beam left in the
centre. For the curve 1 − 1, ≈ 10 % of the beam is left
in the core distribution. The best result is obtained for the
curve 2− 3 with a fraction of ≈ 4 % of the whole particles
distribution. It is worth mentioning that almost no particle
loss is observed (≈ 0.01% of the total number of particles).

For the numerical simulations of the adiabatic splitting
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Figure 5: Relative islands emittance as a function of the
initial emittance. Two types of tune curves are used: 1 − 1
(left) and 2 − 3 (right).

the condition Ω2 = 0 was set only for the resonant value
of the tune. Comparisons with simulations performed with
Ω2 = 0 throughout the whole process showed a decrease
of the fraction of particle left in the centre to ≈ 0.5 %.

A set of numerical simulations was made to assess the
dependence of the fraction of trapped particles on the total
turn numberN over which the tune variation ∆ν = νf −νi

is performed and the σ of the initial distribution. A tune
curve of type 1 − 1 was used. The dependence on σ is
perfectly fitted with an exponential function, while that
on N is a linear function and the combined result gives
NCore/Npart = Ae−τσ with A(N) = a + bN . The nu-
merical results together with the fitted curves are shown in
Fig. 6. The excellent agreement between data and fit func-
tion is clearly visible. From the numerical simulations it
emerges clearly that the parameter τ does not depend onN
and its value is τ ≈ 22.3. Still, it could be a function of the
non-linear parameters of the system.
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Figure 6: Fit results of the fraction of trapped particles as a
function of the total number of turnsN with an exponential
function (left). The amplitude of such an exponential is
fitted as a linear function of N (right).

CONCLUSIONS

In this paper the use of Normal Forms for the change of
the stability type of a non-linear resonance was presented.
Applied to a simple model describing the horizontal be-
tatronic motion it can be successfully used to generate a
scheme for a four-turn extraction. A parametric study of the
beam parameters after splitting was also discussed, show-
ing that the process can be accurately controlled.
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