440 research outputs found

    Superdiffusivity of asymmetric exclusion process in dimensions one and two

    Full text link
    We prove that the diffusion coefficient for the asymmetric exclusion process diverges at least as fast as t1/4t^{1/4} in dimension d=1d=1 and (logt)1/2(\log t)^{1/2} in d=2d=2. The method applies to nearest and non-nearest neighbor asymmetric exclusion processes

    Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the dynamical large deviations for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Biochemistry of nitrification in soil. 1. Kinetics of, and the effects of poisons on, soil nitrification as studied by a soil perfusion technique

    Get PDF
    [First paragraph] Nitrification is the process whereby nitrogen, in the form of the ammonium cation or in organic combination, is converted into the nitrate anion. Nitrification in soil has long been established as a biological process (Schloessing & Muntz, 1877, 1879), but some evidence that, under tropical conditions, a non-biological nitrification in soil may occur has recently accumulated

    A Fredholm Determinant Representation in ASEP

    Full text link
    In previous work the authors found integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice. The dynamics are uniquely determined once the initial state is specified. In this note we restrict our attention to the case of step initial condition with particles at the positive integers, and consider the distribution function for the m'th particle from the left. In the previous work an infinite series of multiple integrals was derived for this distribution. In this note we show that the series can be summed to give a single integral whose integrand involves a Fredholm determinant. We use this determinant representation to derive (non-rigorously, at this writing) a scaling limit.Comment: 12 Pages. Version 3 includes a scaling conjectur

    Extremal statistics of curved growing interfaces in 1+1 dimensions

    Full text link
    We study the joint probability distribution function (pdf) of the maximum M of the height and its position X_M of a curved growing interface belonging to the universality class described by the Kardar-Parisi-Zhang equation in 1+1 dimensions. We obtain exact results for the closely related problem of p non-intersecting Brownian bridges where we compute the joint pdf P_p(M,\tau_M) where \tau_M is there the time at which the maximal height M is reached. Our analytical results, in the limit p \to \infty, become exact for the interface problem in the growth regime. We show that our results, for moderate values of p \sim 10 describe accurately our numerical data of a prototype of these systems, the polynuclear growth model in droplet geometry. We also discuss applications of our results to the ground state configuration of the directed polymer in a random potential with one fixed endpoint.Comment: 6 pages, 4 figures. Published version, to appear in Europhysics Letters. New results added for non-intersecting excursion

    Occupation times of long-range exclusion and connections to KPZ class exponents

    Get PDF
    With respect to a class of long-range exclusion processes on \ZZ^d, with single particle transition rates of order (d+α)|\cdot|^{-(d+\alpha)}, starting under Bernoulli invariant measure νρ\nu_\rho with density ρ\rho, we consider the fluctuation behavior of occupation times at a vertex and more general additive functionals. Part of our motivation is to investigate the dependence on α\alpha, dd and ρ\rho with respect to the variance of these functionals and associated scaling limits. In the case the rates are symmetric, among other results, we find the scaling limits exhaust a range of fractional Brownian motions with Hurst parameter H[1/2,3/4]H\in [1/2,3/4]. However, in the asymmetric case, we study the asymptotics of the variances, which when d=1d=1 and ρ=1/2\rho=1/2 points to a curious dichotomy between long-range strength parameters 03/203/2. In the former case, the order of the occupation time variance is the same as under the process with symmetrized transition rates, which are calculated exactly. In the latter situation, we provide consistent lower and upper bounds and other motivations that this variance order is the same as under the asymmetric short-range model, which is connected to KPZ class scalings of the space-time bulk mass density fluctuations.The research of CB was supported in part by the French Ministry of Education through the grant ANR JCJC EDNHS. PG thanks FCT (Portugal) for support through the research project PTDC/MAT/109844/2009 and CNPq (Brazil) for support through the research project 480431/2013-2. PG thanks CMAT for support by "FEDER" through the "Programa Operacional Factores de Competitividade COMPETE" and by FCT through the project PEst-C/MAT/UI0013/2011. SS was supported in part by ARO grant W911NF-14-1-0179

    Bethe anzats derivation of the Tracy-Widom distribution for one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to a many body quantum boson system with attractive interactions. Performing the summation over the entire spectrum of excited states the problem is reduced to the Fredholm determinant with the Airy kernel which is known to yield the Tracy-Widom distributionComment: 5 page
    corecore