In previous work the authors found integral formulas for probabilities in the
asymmetric simple exclusion process (ASEP) on the integer lattice. The dynamics
are uniquely determined once the initial state is specified. In this note we
restrict our attention to the case of step initial condition with particles at
the positive integers, and consider the distribution function for the m'th
particle from the left. In the previous work an infinite series of multiple
integrals was derived for this distribution. In this note we show that the
series can be summed to give a single integral whose integrand involves a
Fredholm determinant. We use this determinant representation to derive
(non-rigorously, at this writing) a scaling limit.Comment: 12 Pages. Version 3 includes a scaling conjectur