601 research outputs found

    Evaluation of Removed and Recycled Mineral Nutrients in Italian Commercial Persimmon Orchards

    Get PDF
    Persimmon is a typical fruit crop of the Mediterranean region and, since it is considered a minor species, little information is available on its nutrients need. In the present experiment, it was estimated the quantity of removed and recycled nutrients by Kaki Tipo and Rojo Brillante, the two main varieties of persimmon grown in Emilia-Romagna region (Po Valley, Italy). Plants from ten mature orchards were selected and harvested; organs (leaves in summer, fruits at harvest, abscissed leaves, roots and skeleton) biomass and mineral composition were determined. The yearly uptake of macronutrients was similar for the 2 varieties, accounting for (kg/ ha): N 89-91, P 10-11, K 79-91, Ca 132-162, Mg 22-26 and S 9. While K was mostly found in fruits, Ca and Mg were mainly partitioned to leaves. Among micronutrients, Mn and Fe showed the highest values (1.1–1.3 and 1.2–2.1 kg/ha, respectively), followed by B (370 g/ha), while Cu and Zn showed the smallest amounts (less 100 g/ha). Nitrogen, Ca, Mg and S were those more recycled than removed, while K showed an opposite trend; among the microelements, the annual recycled fractions of B and Mn were higher than that removed

    Evaluation of plant derivatives of Meliaceae family as a source of nitrogen for trees

    Get PDF
    Soil application of fresh organic matter is a way to increase soil organic matter and provide nutrients to trees. The effect of application of organic matter depends on the interaction among soil, root and microbial biomass. The aim of this research was to evaluate the potential release of N for hybrid GF677 (P. persica x P. dulcis) uptake, of 6 neemcakes available on the Italian market compared with fresh leaves of Melia azedarach, an ornamental tree that grows in the area of investigation. The release of N, and consequently root uptake was related to C:N ratio, the lower the ratio the higher the N concentration in plant tissues and plant growth. Using the 15N isotope technique, we found that up to 30% of the N applied with fresh Melia leaves, was accumulated in the tree, however the mineral N concentration in soil and plant and plant growth was not affected by the application of plant derivatives

    A new framework topology in the dehydrated form of zeolite levyne.

    Get PDF
    0003-004X/13/1112\u20132063$05.00/DOI: http://dx.doi.org/10.2138/am.2013.4583 2063 A new framework topology in the dehydrated form of zeolite levyne Rossella Arletti1, Giovanna Vezzalini2, Simona Quartieri3, Fernando C\ue1mara1 and Matteo Alvaro4,* 1Dipartimento di Scienze della Terra, Universit\ue0 di Torino, via Valperga Caluso n. 35, 10125 Torino, Italy 2Dipartimento di Scienze Chimiche e Geologiche, Universit\ue0 di Modena e Reggio Emilia, via Giuseppe Campi, 183, 41125 Modena, Italy 3Dipartimento di Fisica e Scienze della Terra, Universit\ue0 di Messina, Viale F. Stagno D\u2019Alcontres, 31, 98122 Messina, Italy 4Dipartimento di Scienze della Terra e dell\u2019Ambiente, Universit\ue0 degli Studi di Pavia, Italy; and International Research School of Planetary Sciences, Universit\ue0 G. d\u2019Annunzio, Chieti, Italy A bstract The thermoelastic behavior and structural evolution of a natural levyne-Ca [(Ca7.8 Na2.2K1.1)\u3a311.1 Al20.0Si34.2O108 c551.5H2O; R3m; a = 13.377(4) \uc5, c = 22.870(1) \uc5, V = 3544.1(3) \uc53] were studied by both T-resolved synchrotron X\u2011ray powder diffraction (SR-XRPD) between room temperature and 800 \ub0C, and by conventional-source high-temperature single-crystal X\u2011ray diffraction (SC-XRD). Above 230 \ub0C, water loss and reallocation of extraframework cations induce the straining and consequent breaking of T-O-T bridges in the D6R, with resulting migration of tetrahedral cations to new tetrahedral sites. The new tetrahedra share an edge with the previously occupied tetrahedra. This phenomenon gives rise to a new topology, which coexists to about 40%, with the original one. The new framework consists of a sequence of a novel zeolitic cage (described as a 20-hedron formed by fourteen 6mR and six 4mR) and two consecutive cancrinite cages along [0001]. This topology, which is reported in the database of the hypothetical zeolite structures as 166_2_293, belongs to the ABC-6 family and can be described by the following sequence of 6-rings: ABCBCACAB, to be compared with that of levyne AABCCABBC. In the new topology the extraframework cations are distributed over 3 new sites: one at the center of the 6mR a5 [0001] shared by the two cancrinite cages, one near the center of the 6mR a5 [0001] at the base of the new cage, and a last one in a 6mR window of the new cage. The 8mR bidimensional channel system originally present in levyne is therefore absent in the new topology and hence molecular diffusion is likely to be partially hindered in the dehydrated form. The phase transition is not completely reversible, at least in the short term, as only partial rehydration was demonstrated

    Canopy-applied silicon is an effective strategy for reducing sweet cherry cracking

    Get PDF
    Fruit cracking caused by rainfall prior to harvest, a major problem in sweet cherry production, is being exacerbated by climate change. Currently, pre-harvest spraying with calcium salt solutions is the prevalent technique to reduce fruit cracking in cherry orchards not covered by plastic roofs. This study evaluated the effectiveness of canopy-applied silicon in the reduction of sweet cherry cracking under different field conditions. Four field trials were conducted on mature trees of the cultivars Van, New Star, and Emperor Francis. Treatments included water (control), calcium chloride, and sodium silicate. Multiple sprays (three) were applied weekly from fruit onset of color to approximately 1 week before harvest. The results showed that under conditions conducive to cracking, sodium silicate reduced the percentage of cracked fruits to a similar or larger extent than calcium chloride. This study highlights how canopy-applied silicon sources may effectively contribute to reducing cherry cracking, acting as an alternative technique to other preventive methods

    Fertilizer Potential of Organic-Based Soil Amendments on cv. Sangiovese (V. vinifera L.) Vines: Preliminary Results

    Get PDF
    The intensification of highly specialized viticulture has led to a dramatic decrease of soil fertility that can be restored by increasing soil organic matter using organic fertilizers. The aim of the present experiment was to evaluate the effect of different organic amendments on vine vegetative growth and nutritional status, soil N availability and microbial biomass, as well as on yield and grape quality. The experiment was carried out in 2020 and 2021, on cv. Sangiovese (Vitis vinifera L.) vines grafted on 110 Richter (V. berlandieri Ă— V. rupestris) planted in February 2019. Plants were fer-tilized yearly in spring with (1) mineral fertilization (MIN), (2) municipal organic waste compost (MOW), and (3) sewage sludge compost (SS). The application of SS increased nitrate availability in both years, while the supply of organic matter (no matter the source) enhanced soil microbial bio-mass content. Plant nutritional status was in the optimal range for all treatments, with an increase of N in SS and K in MOW. Fruit yield in 2020 was not influenced by treatments, while in 2021 it was enhanced by MIN and MOW, which also induced a higher berry quality. Plant vegetative growth was stimulated by the application of SS. In conclusion, from these preliminary results we observed a higher N availability as a consequence of SS supply that resulted in a higher plant biomass, but reduced yield and berry quality, supporting the theory that for vineyards, N should be carefully managed to reach an equilibrium between vegetative and reproductive activity

    Modern Iron Ooids of Hydrothermal Origin as a Proxy for Ancient Deposits

    Get PDF
    We constrained the origin and genetic environment of modern iron ooids (sand-sized grains with a core and external cortex of concentric laminae) providing new tools for the interpretation of their fossil counterparts as well as the analogous particles discovered on Mars. Here, we report an exceptional, unique finding of a still active deposit of submillimetric iron ooids, under formation at the seabed at a depth of 80 m over an area characterized by intense hydrothermal activity off Panarea, a volcanic island north of Sicily (Italy). An integrated analysis, carried out by X-ray Powder Diffraction, Environmental Scanning Electron Microscopy, X-ray Fluorescence and Raman spectroscopy reveals that Panarea ooids are deposited at the seafloor as concentric laminae of primary goethite around existing nuclei. The process is rapid, and driven by hydrothermal fluids as iron source. A sub-spherical, laminated structure resulted from constant agitation and by degassing of CO2-dominated fluids through seafloor sediments. Our investigations point the hydrothermal processes as responsible for the generation of the Panarea ooids, which are neither diagenetic nor reworked. The presence of ooids at the seawater-sediments interface, in fact, highlights how their development and growth is still ongoing. The proposed results show a new process responsible for ooids formation and gain a new insight into the genesis of iron ooids deposits that are distributed at global scale in both modern and past sediments

    Metabolic profiles of whole, parotid and submandibular/sublingual saliva

    Get PDF
    The detection of salivary molecules associated with pathological and physiological alterations has encouraged the search of novel and non-invasive diagnostic biomarkers for oral health evaluation. While genomic, transcriptomic, and proteomic profiles of human saliva have been reported, its metabolic composition is a topic of research: metabolites in submandibular/sublingual saliva have never been analyzed systematically. In this study, samples of whole, parotid, and submandibular/ sublingual saliva from 20 healthy donors, without dental or periodontal diseases, were examined by nuclear magnetic resonance. We identified metabolites which are differently distributed within the three saliva subtypes (54 in whole, 49 in parotid, and 36 in submandibular/sublingual saliva). Principal component analysis revealed a distinct cluster for whole saliva and a partial overlap for parotid and submandibular/sublingual metabolites. We found exclusive metabolites for each subtype: 2-hydroxy-3-methylvalerate, 3-methyl-glutarate, 3-phenylpropionate, 4-hydroxyphenylacetate, 4-hydroxyphenyllactate, galactose, and isocaproate in whole saliva; caprylate and glycolate in submandibular/sublingual saliva; arginine in parotid saliva. Salivary metabolites were classified into standard and non-proteinogenic amino acids and amines; simple carbohydrates; organic acids; bacterial-derived metabolites. The identification of a salivary gland-specific metabolic composition in healthy people provides the basis to invigorate the search for salivary biomarkers associated with oral and systemic diseases

    Synthetic torpor protects rats from exposure to accelerated heavy ions

    Get PDF
    Hibernation or torpor is considered a possible tool to protect astronauts from the deleterious effects of space radiation that contains high-energy heavy ions. We induced synthetic torpor in rats by injecting adenosine 5′-monophosphate monohydrate (5′-AMP) i.p. and maintaining in low ambient temperature room (+ 16 Â°C) for 6 h immediately after total body irradiation (TBI) with accelerated carbon ions (C-ions). The 5′-AMP treatment in combination with low ambient temperature reduced skin temperature and increased survival following 8 Gy C-ion irradiation compared to saline-injected animals. Analysis of the histology of the brain, liver and lungs showed that 5′-AMP treatment following 2 Gy TBI reduced activated microglia, Iba1 positive cells in the brain, apoptotic cells in the liver, and damage to the lungs, suggesting that synthetic torpor spares tissues from energetic ion radiation. The application of 5′-AMP in combination with either hypoxia or low temperature environment for six hours following irradiation of rat retinal pigment epithelial cells delays DNA repair and suppresses the radiation-induced mitotic catastrophe compared to control cells. We conclude that synthetic torpor protects animals from cosmic ray-simulated radiation and the mechanism involves both hypothermia and hypoxia
    • …
    corecore