5 research outputs found

    Advances in Physalis molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics

    Get PDF
    The plants of the genus Physalis L. have been extensively utilized in traditional and indigenous Chinese medicinal practices for treating a variety of ailments, including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present review aims to achieve a comprehensive and up-to-date investigation of the genus Physalis, a new model crop, to understand plant diversity and fruit development. Several chloroplast DNA-, nuclear ribosomal DNA-, and genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer (ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS), sequence-characterized amplified region (SCAR), and single nucleotide polymorphism (SNP), were developed for molecular identification, genetic diversity, and phylogenetic studies of Physalis species. A large number of functional genes involved in inflated calyx syndrome development (AP2-L, MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14, and 3β-HSB) were identified contributing to the breeding of novel Physalis varieties. Various omic studies revealed and functionally identified a series of reproductive organ development-related factors, environmental stress-responsive genes, and active component biosynthesis-related enzymes. The chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.) M. Martínez, and Physalis pruinosa L. have been recently published providing a valuable resource for genome editing in Physalis crops. Our review summarizes the recent progress in genetic diversity, molecular identification, phylogenetics, functional genes, and the application of omics in the genus Physalis and accelerates efficient utilization of this traditional herb

    Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting

    No full text
    \u3cp\u3ePurpose: To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images. Methods: We retrospectively assessed 363 breast cancer cases (Luminal A 151, Luminal B 96, HER2 76, and BLBC 40). Eighty-two features defined in the BI-RADS lexicon were visually described. A decision tree model with the Chi-squared automatic interaction detector (CHAID) algorithm was applied for feature selection and classification. A 10-fold cross-validation was performed to investigate the performance (i.e., accuracy, positive predictive value, sensitivity, and F1-score) of the decision tree model. Results: Seven of the 82 variables were derived from the decision tree-based feature selection and used as features for the classification of molecular subtypes including mass margin calcification on mammography, mass margin types of kinetic curves in the delayed phase, mass internal enhancement characteristics, non-mass enhancement distribution on MRI, and breastfeeding history. The decision tree model accuracy was 74.1%. For each molecular subtype group, Luminal A achieved a sensitivity, positive predictive value, and F1-score of 79.47%, 75.47%, and 77.42%, respectively; Luminal B showed a sensitivity, positive predictive value, and F1-score of 64.58%, 55.86%, and 59.90%, respectively; HER2 had a sensitivity, positive predictive value, and F1-scores of 81.58%, 95.38%, and 87.94%, respectively; BLBC showed sensitivity, positive predictive value, and F1-scores of 62.50%, 89.29%, and 73.53%, respectively. Conclusions: We applied a complete “white box” machine learning method to predict the molecular subtype of breast cancer based on the BI-RADS feature description in a multi-modal setting. By combining BI-RADS features in both mammography and MRI, the prediction accuracy is boosted and robust. The proposed method can be easily applied widely regardless of variability of imaging vendors and settings because of the applicability and acceptance of the BI-RADS.\u3c/p\u3

    Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting

    No full text
    Purpose: To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images. Methods: We retrospectively assessed 363 breast cancer cases (Luminal A 151, Luminal B 96, HER2 76, and BLBC 40). Eighty-two features defined in the BI-RADS lexicon were visually described. A decision tree model with the Chi-squared automatic interaction detector (CHAID) algorithm was applied for feature selection and classification. A 10-fold cross-validation was performed to investigate the performance (i.e., accuracy, positive predictive value, sensitivity, and F1-score) of the decision tree model. Results: Seven of the 82 variables were derived from the decision tree-based feature selection and used as features for the classification of molecular subtypes including mass margin calcification on mammography, mass margin types of kinetic curves in the delayed phase, mass internal enhancement characteristics, non-mass enhancement distribution on MRI, and breastfeeding history. The decision tree model accuracy was 74.1%. For each molecular subtype group, Luminal A achieved a sensitivity, positive predictive value, and F1-score of 79.47%, 75.47%, and 77.42%, respectively; Luminal B showed a sensitivity, positive predictive value, and F1-score of 64.58%, 55.86%, and 59.90%, respectively; HER2 had a sensitivity, positive predictive value, and F1-scores of 81.58%, 95.38%, and 87.94%, respectively; BLBC showed sensitivity, positive predictive value, and F1-scores of 62.50%, 89.29%, and 73.53%, respectively. Conclusions: We applied a complete “white box” machine learning method to predict the molecular subtype of breast cancer based on the BI-RADS feature description in a multi-modal setting. By combining BI-RADS features in both mammography and MRI, the prediction accuracy is boosted and robust. The proposed method can be easily applied widely regardless of variability of imaging vendors and settings because of the applicability and acceptance of the BI-RADS

    Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting

    No full text
    Purpose: To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images. Methods: We retrospectively assessed 363 breast cancer cases (Luminal A 151, Luminal B 96, HER2 76, and BLBC 40). Eighty-two features defined in the BI-RADS lexicon were visually described. A decision tree model with the Chi-squared automatic interaction detector (CHAID) algorithm was applied for feature selection and classification. A 10-fold cross-validation was performed to investigate the performance (i.e., accuracy, positive predictive value, sensitivity, and F1-score) of the decision tree model. Results: Seven of the 82 variables were derived from the decision tree-based feature selection and used as features for the classification of molecular subtypes including mass margin calcification on mammography, mass margin types of kinetic curves in the delayed phase, mass internal enhancement characteristics, non-mass enhancement distribution on MRI, and breastfeeding history. The decision tree model accuracy was 74.1%. For each molecular subtype group, Luminal A achieved a sensitivity, positive predictive value, and F1-score of 79.47%, 75.47%, and 77.42%, respectively; Luminal B showed a sensitivity, positive predictive value, and F1-score of 64.58%, 55.86%, and 59.90%, respectively; HER2 had a sensitivity, positive predictive value, and F1-scores of 81.58%, 95.38%, and 87.94%, respectively; BLBC showed sensitivity, positive predictive value, and F1-scores of 62.50%, 89.29%, and 73.53%, respectively. Conclusions: We applied a complete “white box” machine learning method to predict the molecular subtype of breast cancer based on the BI-RADS feature description in a multi-modal setting. By combining BI-RADS features in both mammography and MRI, the prediction accuracy is boosted and robust. The proposed method can be easily applied widely regardless of variability of imaging vendors and settings because of the applicability and acceptance of the BI-RADS.</p
    corecore