20 research outputs found
Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock
Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations
Genomics of Brucellosis in Wildlife and Livestock of the Greater Yellowstone Ecosystem
Brucellosis, a disease caused by the bacterium Brucella abortus, has recently been expanding its distribution in the Greater Yellowstone Ecosystem (GYE), with increased outbreaks in cattle and rising seroprevalence in elk (Cervus elaphus) over the past decade. Genetic studies suggest elk are a primary source of recent transmission to cattle. However, these studies are based on Variable Number Tandem Repeat (VNTR) data, which are limited in assessing and quantifying transmission among species. The goal of this study was to (i) investigate the introduction history of B. abortus in the GYE, (ii) identify B. abortus lineages associated with host species and/or geographic localities, and (iii) quantify transmission across wildlife and livestock host species and populations. We sequenced B. abortus whole genomes (n= 207) derived from isolates collected from three host species (bison, elk, cattle) over the past 30 years, throughout the GYE. We identified genetic variation among isolates, and applied a spatial diffusion phylogeographic modeling approach that incorporated temporal information from sampling. Based on these data, our results suggest four divergent Brucella lineages, with a time to most recent common ancestor of ~130 years ago, possibly representing a minimum of four brucellosis introductions into the GYE. Two Brucella lineages were generally clustered by geography. Evidence for cross-species transmission was detected among all species, though most events occur within species and herds. Understanding transmission dynamics is imperative for implementing effective control measures and may assist in identifying source populations responsible for past and future brucellosis infections in wildlife and outbreaks in livestock
Global phylogenomic diversity of Brucella abortus: spread of a dominant lineage
Brucella abortus is a globally important zoonotic pathogen largely found in cattle hosts and is typically transmitted to humans through contaminated dairy products or contact with diseased animals. Despite the long, shared history of cattle and humans, little is known about how trade in cattle has spread this pathogen throughout the world. Whole genome sequencing provides unparalleled resolution to investigate the global evolutionary history of a bacterium such as B. abortus by providing phylogenetic resolution that has been unobtainable using other methods. We report on large-scale genome sequencing and analysis of B. abortus collected globally from cattle and 16 other hosts from 52 countries. We used single nucleotide polymorphisms (SNPs) to identify genetic variation in 1,074 B. abortus genomes and using maximum parsimony generated a phylogeny that identified four major clades. Two of these clades, clade A (median date 972 CE; 95% HPD, 781–1142 CE) and clade B (median date 150 BCE; 95% HPD, 515 BCE–164 CE), were exceptionally diverse for this species and are exclusively of African origin where provenance is known. The third clade, clade C (median date 949 CE; 95% HPD, 766–1102 CE), had most isolates coming from a broad swath of the Middle East, Europe, and Asia, also had relatively high diversity. Finally, the fourth major clade, clade D (median date 1467 CE; 95% HPD, 1367–1553 CE) comprises the large majority of genomes in a dominant but relatively monomorphic group that predominantly infects cattle in Europe and the Americas. These data are consistent with an African origin for B. abortus and a subsequent spread to the Middle East, Europe, and Asia, probably through the movement of infected cattle. We hypothesize that European arrival to the Americas starting in the 15th century introduced B. abortus from Western Europe through the introduction of a few common cattle breeds infected with strains from clade D. These data provide the foundation of a comprehensive global phylogeny of this important zoonotic pathogen that should be an important resource in human and veterinary epidemiology
Unactivated Pd-Catalyzed Oxidative Cross-Coupling Reactions of Arenes with Benzene: A Theoretical and Experimental study
Oxidative C-H bond activated palladium-catalyzed aromatic cross-coupling reactions offer advantages of fewer required synthetic steps but disadvantages of loss of inherent regioselectivity and selectivity. In one proposed catalytic cycle, each arene adds to a palladium carboxylate catalyst according to a concerted metalation deprotonation (CMD) mechanism, followed by reductive elimination to couple the arenes and the replenishment of the catalyst by an oxidant. Using this proposed mechanism, molecular structures and free energy profiles were calculated for coupling of benzene with a range of heteroarenes containing various substituents and with several Pd-carboxylate catalysts. Reaction kinetics were analysed using the energetic span model, predicting TOFs of heterocoupling (HB & BH) and homocoupling (HH & BB) pathway and assessing degrees of turnover frequency control (XTOFs). More electron-withdrawing carboxylate ligands and more electron-donating heteroarene substituents decrease activation and reaction free energies of addition steps, with C-2 more favourable than C-3. When heteroarene and catalyst choice are particularly favourable, the first association can become exergonic, causing a significant change in catalytic kinetics. When not exergonic, free energy for addition of benzene is almost always higher, leading to large energetic spans and slower TOFs (BB < HB < BH < HH). Non-exergonic pathways are also faster with more electron-withdrawing ligands and more electron-donating heteroarene substituents because of a lower energy addition steps and smaller energetic span. For exergonic associations, the low energy arene-catalyst intermediate creates a larger energetic span, slowing down the HH and HB pathways. More electron-withdrawing ligands and more electron-donating substituents increase the relative TOF for BH and the reaction requires only small excesses of benzene to induce heterocoupling
Identification of Brucella suis from Feral Swine in Selected States in the USA
Serologic tests currently available for brucellosis diagnosis detect antibodies to Brucella but do not distinguish between species of Brucella. Although Brucella suis is known to circulate within various feral swine (Sus scrofa) populations, our objective was to determine the primary species of Brucella circulating in feral swine populations in areas of the US with high brucellosis prevalence. We cultured lymph nodes from 183 feral swine. We identified 22 isolates from 21 animals, and all isolates were genotyped as B. suis. Most isolates were B. suis biovar 1, with the exception of two genetically distinct isolates from one feral swine in Hawaii, which were identified as B. suis biovar 3. Serum from each feral swine was also tested by the fluorescence polarization assay when possible, but only 52% (95% CL529.8–74.3) of culture-positive animals were antibody positive. Our results indicate that brucellosis infections in feral swine within the US are typically caused by B. suis. However, improved serologic tests are needed to more accurately determine exposure to Brucella spp. and to monitor disease trends in feral swine populations
Transmission of Brucellosis from Elk to Cattle and Bison, Greater Yellowstone Area, USA, 2002–2012
Bovine brucellosis has been nearly eliminated from livestock in the United States. Bison and elk in the Greater Yellowstone Area remain reservoirs for the disease. During 1990–2002, no known cases occurred in Greater Yellowstone Area livestock. Since then, 17 transmission events from wildlife to livestock have been investigated
Identification of Source of Brucella suis Infection in Human by Whole-Genome Sequencing, United States and Tonga
Brucella suis infection was diagnosed in a man from Tonga, Polynesia, who had butchered swine in Oregon, USA. Although the US commercial swine herd is designated brucellosis-free, exposure history suggested infection from commercial pigs. We used whole-genome sequencing to determine that the man was infected in Tonga, averting a field investigation
A Brucella spp. Isolate from a Pac-Man Frog (Ceratophrys ornata) Reveals Characteristics Departing from Classical Brucellae
Brucella are highly infectious bacterial pathogens responsible for brucellosis, a frequent worldwide zoonosis. The Brucella genus has recently expanded from 6 to 11 species, all of which were associated with mammals; The natural host range recently expanded to amphibians after some reports of atypical strains from frogs. Here we describe the first in depth phenotypic and genetic characterization of a Brucella strains isolated from a frog. Strain B13-0095 was isolated from a Pac-Man frog (Ceratophyrus ornate) at a veterinary hospital in Texas and was initially misidentified as Ochrobactrum anthropi. We found that B13-0095 belongs to a group of early-diverging brucellae that includes Brucella inopinata strain BO1 and the B. inopinata-like strain BO2, with traits that depart significantly from those of the ‘classical’ Brucella spp. Analysis of B13-0095 genome sequence revealed several specific features that suggest that this isolate represents an intermediate between a soil associated ancestor and the host adapted ‘classical’ species. Like strain BO2, B13-0095 does not possess the genes required to produce the perosamine based LPS found in classical Brucella, but has a set of genes that could encode a rhamnose based O-antigen. Despite this, B13-0095 has a very fast intracellular replication rate in both epithelial cells and macrophages. Finally, another major finding in this study is the bacterial motility observed for strains B13-0095, BO1 and BO2, which is remarkable for this bacterial genus.This study thus highlights several novel characteristics in strains belonging to an emerging group within the Brucella genus. Accurate identification tools for such atypical Brucella isolates and careful evaluation of their zoonotic potential, are urgently required