11,888 research outputs found

    Probability tilting of compensated fragmentations

    Full text link
    Fragmentation processes are part of a broad class of models describing the evolution of a system of particles which split apart at random. These models are widely used in biology, materials science and nuclear physics, and their asymptotic behaviour at large times is interesting both mathematically and practically. The spine decomposition is a key tool in its study. In this work, we consider the class of compensated fragmentations, or homogeneous growth-fragmentations, recently defined by Bertoin. We give a complete spine decomposition of these processes in terms of a L\'evy process with immigration, and apply our result to study the asymptotic properties of the derivative martingale.Comment: 41 pages, 1 figure. This revised version improves the conditions in Theorem 6.

    Convergent-divergent nozzle flows

    Get PDF
    Uniform two-zone perfect gas expansions in convergent-divergent nozzle

    Rigorous Proof of Pseudospin Ferromagnetism in Two-Component Bosonic Systems with Component-Independent Interactions

    Full text link
    For a two-component bosonic system, the components can be mapped onto a pseudo-spin degree of freedom with spin quantum number S=1/2. We provide a rigorous proof that for a wide-range of real Hamiltonians with component independent mass and interaction, the ground state is a ferromagnetic state with pseudospin fully polarized. The spin-wave excitations are studied and found to have quadratic dispersion relations at long wave length.Comment: 4 pages, no figur

    A mechanism to pin skyrmions in chiral magnets

    Full text link
    We propose a mechanism to pin skyrmions in chiral magnets by introducing local maximum of magnetic exchange strength, which can be realized in chiral magnetic thin films by engineering the local density of itinerate electrons. Thus we find a way to artificially control the position of a single skyrmion in chiral magnetic thin films. The stationary properties and the dynamical pinning and depinning processes of an isolated skyrmion around a pinning center are studied. We do a series of simulations to show that the critical current to depin a skyrmion has linearly dependence on the pinning strength. We also estimate the critical current to have order of magnitude 10^{7}\sim10^{8}A/m^{2}

    Axisymmetric reacting gas nonequilibrium performance program

    Get PDF
    Computer program calculates the inviscid one-dimensional equilibrium, frozen, and nonequilibrium nozzle expansion of propellant exhaust mixtures containing these six elements - carbon, hydrogen, oxygen, nitrogen, fluorine, and chlorine plus either aluminum, beryllium, boron or lithium. This program will perform calculations for contoured and conical nozzles

    Space shuttle: Supersonic aerodynamic characteristics of the MSC 040A orbiter (M equals 2.0 to 4.0)

    Get PDF
    A wind tunnel test of the space shuttle orbiter configuration 040A was run in a 20 in. supersonic wind tunnel. Basic aerodynamic data for this vehicle were determined at Mach 2.0, 2.4, 3.0 and 4.0

    Origin of Low Thermal Conductivity in Nuclear Fuels

    Full text link
    Using a novel many-body approach, we report lattice dynamical properties of UO2 and PuO2 and uncover various contributions to their thermal conductivities. Via calculated Grueneisen constants, we show that only longitudinal acoustic modes having large phonon group velocities are efficient heat carriers. Despite the fact that some optical modes also show their velocities which are extremely large, they do not participate in the heat transfer due to their unusual anharmonicity. Ways to improve thermal conductivity in these materials are discussed.Comment: 4 pages, 3 figures, 1 tabl

    Numerical and Monte Carlo Bethe ansatz method: 1D Heisenberg model

    Get PDF
    In this paper we present two new numerical methods for studying thermodynamic quantities of integrable models. As an example of the effectiveness of these two approaches, results from numerical solutions of all sets of Bethe ansatz equations, for small Heisenberg chains, and Monte Carlo simulations in quasi-momentum space, for a relatively larger chains, are presented. Our results agree with those obtained by thermodynamics Bethe ansatz (TBA) and Quantum Transfer Matrix (QTM).Comment: 8 pages, 6 figure

    The role of inter-well tunneling strength on coherence dynamics of two-species Bose-Einstein condensates

    Full text link
    Coherence dynamics of two-species Bose-Einstein condensates in double wells is investigated in mean field approximation. We show that the system can exhibit decoherence phenomena even without the condensate-environment coupling and the variation tendency of the degree of coherence depends on not only the parameters of the system but also the initial states. We also investigate the time evolution of the degree of coherence for a Rosen-Zener form of tunneling strength, and propose a method to get a condensate system with certain degree of coherence through a time-dependent tunneling strength
    corecore